Add RAII-wrapped Mutexes for access to state-tracking variables

This commit is contained in:
Phillip Kühne 2025-02-14 12:00:31 +01:00
parent 0d6977e148
commit 264e37c983
Signed by: phillip
GPG Key ID: E4C1C4D2F90902AA
5 changed files with 287 additions and 59 deletions

View File

@ -11,7 +11,6 @@ void Dezibot::begin(void)
{
ESP_LOGI("Dezibot", "Initializing Dezibot");
power.begin();
delay(10);
Wire.begin(SDA_PIN, SCL_PIN);
infraredLight.begin();
lightDetection.begin();

View File

@ -9,6 +9,8 @@
#include "Power.h"
SemaphoreHandle_t Power::powerMutex = NULL;
void vTaskUpdatePowerState(void *pvParameters) {
for (;;) {
ESP_LOGV(TAG, "Updating Power State...");
@ -22,6 +24,15 @@ void Power::begin() {
// if not, we will do it.
ESP_LOGI(TAG, "Initializing Power Management");
// Create mutex if it doesn't exist
if (powerMutex == NULL) {
powerMutex = xSemaphoreCreateMutex();
if (powerMutex == NULL) {
ESP_LOGE(TAG, "Failed to create power mutex");
Serial.println("Failed to create power mutex");
}
}
if (powerScheduler == nullptr) {
ESP_LOGI(TAG, "Creating Power Scheduler");
powerScheduler = &PowerScheduler::getPowerScheduler(
@ -149,29 +160,38 @@ void Power::updatePowerStateHandler() {
int referenceCurrentMa =
PowerParameters::Battery::DISCHARGE_CURVE::REFERENCE_CURRENT_A * 1000;
float coloumbsConsumedSinceLastUpdate;
// Calculate remaining battery charge in Coulombs based on current and time
float coloumbsConsumedSinceLastUpdate =
(currentCurrent / 1000) *
((pdTICKS_TO_MS(xTaskGetTickCount() - lastPowerStateUpdate)) / 1000.0);
// Update coloumbs remaining
coloumbsRemaining -= coloumbsConsumedSinceLastUpdate;
if (!busPowered) {
float coloumbsConsumedSinceLastUpdate =
(currentCurrent / 1000) *
((pdTICKS_TO_MS(xTaskGetTickCount() - lastPowerStateUpdate)) / 1000.0);
// Update coloumbs remaining
coloumbsRemaining -= coloumbsConsumedSinceLastUpdate;
}
float chargeState;
// If current flow is close enough to reference, get battery charge state via
// voltage curve
if ((currentCurrent > (referenceCurrentMa * 0.6)) &&
(currentCurrent < (referenceCurrentMa * 1.4))) {
// Get battery charge state from voltage curve
chargeState = getBatteryVoltageChargePercent();
if (!busPowered) {
if ((currentCurrent > (referenceCurrentMa * 0.6)) &&
(currentCurrent < (referenceCurrentMa * 1.4))) {
// Get battery charge state from voltage curve
chargeState = getBatteryVoltageChargePercent();
} else {
// Estimate battery charge state from charge consumption
float oldChargeState = lastSOC[latestSoCIndex];
chargeState = oldChargeState -
((coloumbsConsumedSinceLastUpdate /
PowerParameters::Battery::CELL_CHARGE_FULL_COLOUMB) *
100);
}
} else {
// Estimate battery charge state from charge consumption
float oldChargeState = lastSOC[latestSoCIndex];
chargeState =
oldChargeState - ((coloumbsConsumedSinceLastUpdate /
PowerParameters::Battery::CELL_CHARGE_FULL_COLOUMB) *
100);
// If we are charging, we can't estimate the charge state based on current
// consumption
chargeState = getBatteryVoltageChargePercent();
}
addSoCSample(chargeState);
@ -190,10 +210,16 @@ void Power::updatePowerStateHandler() {
powerScheduler->recalculateCurrentBudgets();
ESP_LOGV(TAG, "Current: %f mA, Charge: %f Coulombs, %d %%", currentCurrent,
coloumbsRemaining, percentRemaining);
// Update supply and charge state flags
busPowered = digitalRead(PowerParameters::PinConfig::VUSB_SENS);
chargingState = digitalRead(PowerParameters::PinConfig::BAT_CHG_STAT);
return;
}
float Power::getMax3V3Current() {
// Conversion from Thesis
float u_bat = getBatteryVoltage();
float i_bat = PowerParameters::Battery::CELL_CURRENT_1C_MA;
float eta = PowerParameters::BUCK_BOOST_EFFICIENCY;
@ -202,6 +228,11 @@ float Power::getMax3V3Current() {
}
void Power::addSoCSample(float soc) {
PowerMutex lock(powerMutex);
if (!lock.isLocked()) {
ESP_LOGE(TAG, "Could not take power to add SoC sample");
return;
}
latestSoCIndex =
(latestSoCIndex + 1) % PowerParameters::Battery::AVERAGING_SAMPLES;
lastSOC[latestSoCIndex] = soc;
@ -221,6 +252,11 @@ void Power::initPowerState(void) {
constexpr float fullColoumbs =
PowerParameters::Battery::CELL_CHARGE_FULL_COLOUMB;
percentRemaining = initialChargePercentages;
// Set up flags and pins for them
pinMode(PowerParameters::PinConfig::VUSB_SENS, INPUT);
pinMode(PowerParameters::PinConfig::BAT_CHG_STAT, INPUT_PULLUP);
busPowered = digitalRead(PowerParameters::PinConfig::VUSB_SENS);
chargingState = digitalRead(PowerParameters::PinConfig::BAT_CHG_STAT);
}
void Power::dumpPowerStatistics() {
@ -228,31 +264,69 @@ void Power::dumpPowerStatistics() {
Serial.printf("Current: %f mA\r\n", Power::getCurrentCurrent());
Serial.printf("Battery Voltage: %f V\r\n", Power::getBatteryVoltage());
Serial.printf("Battery Charge: %f %%\r\n", Power::getBatteryChargePercent());
Serial.printf("Battery Charge: %f Coulombs\r\n", Power::getBatteryChargeCoulombs());
Serial.printf("Max 3.3V Current in this state: %f mA\r\n", Power::getMax3V3Current());
Serial.printf("Battery Charge: %f Coulombs\r\n",
Power::getBatteryChargeCoulombs());
Serial.printf("Max 3.3V Current in this state (1C, 2C): %f mA, %f mA \r\n",
Power::getMax3V3Current(), Power::getMax3V3Current() * 2);
Serial.printf("=========================================\r\n");
}
void Power::dumpConsumerStatistics() {
Serial.printf("======== Dezibot Consumer Statistics ========\r\n");
Serial.printf("ESP: %f mA\r\n", Power::getConsumerCurrent(PowerParameters::PowerConsumers::ESP));
Serial.printf("WIFI: %f mA\r\n", Power::getConsumerCurrent(PowerParameters::PowerConsumers::WIFI));
Serial.printf("LED_RGB_TOP_LEFT: %f mA\r\n", Power::getConsumerCurrent(PowerParameters::PowerConsumers::LED_RGB_TOP_LEFT));
Serial.printf("LED_RGB_TOP_RIGHT: %f mA\r\n", Power::getConsumerCurrent(PowerParameters::PowerConsumers::LED_RGB_TOP_RIGHT));
Serial.printf("LED_RGB_BOTTOM: %f mA\r\n", Power::getConsumerCurrent(PowerParameters::PowerConsumers::LED_RGB_BOTTOM));
Serial.printf("RGBW_SENSOR: %f mA\r\n", Power::getConsumerCurrent(PowerParameters::PowerConsumers::RGBW_SENSOR));
Serial.printf("LED_IR_BOTTOM: %f mA\r\n", Power::getConsumerCurrent(PowerParameters::PowerConsumers::LED_IR_BOTTOM));
Serial.printf("LED_IR_FRONT: %f mA\r\n", Power::getConsumerCurrent(PowerParameters::PowerConsumers::LED_IR_FRONT));
Serial.printf("PT_IR: %f mA\r\n", Power::getConsumerCurrent(PowerParameters::PowerConsumers::PT_IR));
Serial.printf("PT_DL: %f mA\r\n", Power::getConsumerCurrent(PowerParameters::PowerConsumers::PT_DL));
Serial.printf("LED_UV: %f mA\r\n", Power::getConsumerCurrent(PowerParameters::PowerConsumers::LED_UV));
Serial.printf("DISPLAY_OLED: %f mA\r\n", Power::getConsumerCurrent(PowerParameters::PowerConsumers::DISPLAY_OLED));
Serial.printf("MOTOR_LEFT: %f mA\r\n", Power::getConsumerCurrent(PowerParameters::PowerConsumers::MOTOR_LEFT));
Serial.printf("MOTOR_RIGHT: %f mA\r\n", Power::getConsumerCurrent(PowerParameters::PowerConsumers::MOTOR_RIGHT));
Serial.printf("IMU: %f mA\r\n", Power::getConsumerCurrent(PowerParameters::PowerConsumers::IMU));
Serial.printf("ESP: %f mA\r\n", Power::getConsumerCurrent(
PowerParameters::PowerConsumers::ESP));
Serial.printf("WIFI: %f mA\r\n", Power::getConsumerCurrent(
PowerParameters::PowerConsumers::WIFI));
Serial.printf("LED_RGB_TOP_LEFT: %f mA\r\n",
Power::getConsumerCurrent(
PowerParameters::PowerConsumers::LED_RGB_TOP_LEFT));
Serial.printf("LED_RGB_TOP_RIGHT: %f mA\r\n",
Power::getConsumerCurrent(
PowerParameters::PowerConsumers::LED_RGB_TOP_RIGHT));
Serial.printf("LED_RGB_BOTTOM: %f mA\r\n",
Power::getConsumerCurrent(
PowerParameters::PowerConsumers::LED_RGB_BOTTOM));
Serial.printf(
"RGBW_SENSOR: %f mA\r\n",
Power::getConsumerCurrent(PowerParameters::PowerConsumers::RGBW_SENSOR));
Serial.printf("LED_IR_BOTTOM: %f mA\r\n",
Power::getConsumerCurrent(
PowerParameters::PowerConsumers::LED_IR_BOTTOM));
Serial.printf(
"LED_IR_FRONT: %f mA\r\n",
Power::getConsumerCurrent(PowerParameters::PowerConsumers::LED_IR_FRONT));
Serial.printf(
"PT_IR: %f mA\r\n",
Power::getConsumerCurrent(PowerParameters::PowerConsumers::PT_IR));
Serial.printf(
"PT_DL: %f mA\r\n",
Power::getConsumerCurrent(PowerParameters::PowerConsumers::PT_DL));
Serial.printf(
"LED_UV: %f mA\r\n",
Power::getConsumerCurrent(PowerParameters::PowerConsumers::LED_UV));
Serial.printf(
"DISPLAY_OLED: %f mA\r\n",
Power::getConsumerCurrent(PowerParameters::PowerConsumers::DISPLAY_OLED));
Serial.printf(
"MOTOR_LEFT: %f mA\r\n",
Power::getConsumerCurrent(PowerParameters::PowerConsumers::MOTOR_LEFT));
Serial.printf(
"MOTOR_RIGHT: %f mA\r\n",
Power::getConsumerCurrent(PowerParameters::PowerConsumers::MOTOR_RIGHT));
Serial.printf("IMU: %f mA\r\n", Power::getConsumerCurrent(
PowerParameters::PowerConsumers::IMU));
Serial.printf("=============================================\r\n");
}
bool Power::isUSBPowered() { return busPowered; }
bool Power::isBatteryPowered() { return !busPowered; }
bool Power::isBatteryCharging() { return chargingState && busPowered; }
bool Power::isBatteryDischarging() { return !chargingState && !busPowered; }
bool Power::isBatteryFullyCharged() { return !chargingState && busPowered; }
int Power::latestSoCIndex = 0;
float Power::lastSOC[PowerParameters::Battery::AVERAGING_SAMPLES] = {0};
TickType_t Power::lastPowerStateUpdate = 0;
@ -261,4 +335,10 @@ float Power::coloumbsRemaining =
float Power::percentRemaining = 100.0;
PowerScheduler *Power::powerScheduler = nullptr;
Power::Power() {}
bool Power::busPowered = false;
bool Power::chargingState = false;
Power::Power() {}
Power::~Power() {}

View File

@ -8,6 +8,12 @@
*/
#include "PowerScheduler.h"
#include "esp_adc/adc_cali.h"
#include "esp_adc/adc_cali_scheme.h"
#include "driver/gpio.h"
#include "driver/adc.h"
#include "esp_adc/adc_oneshot.h"
#include "freertos/semphr.h"
#ifndef Power_h
#define Power_h
@ -17,6 +23,33 @@ enum TaskResumptionReason { POWER_AVAILABLE, TIMEOUT };
class Power {
private:
static SemaphoreHandle_t powerMutex;
static constexpr uint16_t MUTEX_TIMEOUT_MS = 1;
// RAII for mutex
class PowerMutex {
private:
SemaphoreHandle_t &mutex;
bool locked;
public:
PowerMutex(SemaphoreHandle_t &mutex) : mutex(mutex), locked(false) {
locked =
(xSemaphoreTake(mutex, pdMS_TO_TICKS(MUTEX_TIMEOUT_MS)) == pdTRUE);
if (!locked) {
ESP_LOGW(TAG, "Could not take power mutex");
}
}
~PowerMutex() {
if (locked) {
xSemaphoreGive(mutex);
}
}
bool isLocked() { return locked; }
};
protected:
/// @brief PowerScheduler instance to manage power consumption
static PowerScheduler *powerScheduler;
@ -34,6 +67,10 @@ protected:
/// @brief remaining Charge in percent
static float percentRemaining;
static bool busPowered;
static bool chargingState;
/// @brief Circular array of last calculated values for current state of
/// charge
static float lastSOC[PowerParameters::Battery::AVERAGING_SAMPLES];
@ -48,7 +85,8 @@ protected:
public:
static void begin(void);
Power();
/// @brief Get the current free current budget (to C1 discharge)
~Power();
/// @brief Get the current free current budget (to C1 discharge)
/// @return the amount of power that is currently available (in mA)
static float getFreeLimitCurrentBudget(void);
/// @brief Get the current hard maximum free current (to C2 discharge)
@ -63,8 +101,8 @@ public:
/// @return whether the current could be successfully allocated
static bool
tryAccquireCurrentAllowance(PowerParameters::PowerConsumers consumer,
uint16_t neededcurrent,
uint16_t requestedDurationMs = 0);
uint16_t neededcurrent,
uint16_t requestedDurationMs = 0);
/// @brief "Return" the current currently allocated to a consumer
/// @param consumer the active consumer to release the current for
static void releaseCurrent(PowerParameters::PowerConsumers consumer);
@ -77,9 +115,9 @@ public:
/// available
/// @return whether the power could be successfully allocatedy
static bool waitForCurrentAllowance(PowerParameters::PowerConsumers consumer,
uint16_t neededCurrent,
uint16_t maxSlackTimeMs,
uint16_t requestedDurationMs);
uint16_t neededCurrent,
uint16_t maxSlackTimeMs,
uint16_t requestedDurationMs);
/// @brief Put the ESP32 into deep sleep mode, without a method to wake up
/// again. Basically this is a shutdown.
static void beginPermanentDeepSleep(void);
@ -88,7 +126,8 @@ public:
/// @return the amount of power that is currently allocated (in mA)
static float getCurrentCurrent(void);
// @brief Responsible for recalculating the current budgets
/// @brief Responsible for recalculating the current budgets
/// @note these change based on the current state of charge
static void recalculateCurrentBudgets(void);
// @brief Get current consumption of a consumer
@ -125,6 +164,27 @@ public:
/// @brief dump consumer statistics to serial
static void dumpConsumerStatistics();
/// @brief get wether power is supplied via USB
/// @return true if power is supplied via USB
static bool isUSBPowered();
/// @brief get wether power is supplied via battery
/// @return true if power is supplied via battery
static bool isBatteryPowered();
/// @brief get wether the battery is currently charging
/// @return true if the battery is charging
static bool isBatteryCharging();
/// @brief get wether the battery is currently discharging
/// @return true if the battery is discharging
static bool isBatteryDischarging();
/// @brief get wether the battery is currently fully charged
/// @return true if the battery is fully charged
static bool isBatteryFullyCharged();
};
extern Power power;

View File

@ -16,17 +16,22 @@
bool PowerScheduler::tryAccquireCurrentAllowance(
PowerParameters::PowerConsumers consumer, float neededCurrent,
uint16_t requestedDurationMs) {
float existingConsumption = getConsumerCurrent(consumer);
const bool currentAvailableBelowLimit =
float existingConsumption = getConsumerCurrent(consumer);
const bool currentAvailableBelowLimit =
this->freeLimitCurrentBudget + existingConsumption > 0;
const bool currentAvailableBelowMaximum =
const bool currentAvailableBelowMaximum =
this->freeMaximumCurrentBudget + existingConsumption >= neededCurrent;
const bool currentIsInsignificant = neededCurrent < 1;
if (currentIsInsignificant ||
(currentAvailableBelowLimit && currentAvailableBelowMaximum)) {
const bool currentIsInsignificant = neededCurrent < 1;
if (currentIsInsignificant ||
(currentAvailableBelowLimit && currentAvailableBelowMaximum)) {
if (existingConsumption > 0) {
releaseCurrent(consumer);
}
PowerSchedulerMutex lock(powerSchedulerMutex);
if (lock.isLocked() == false) {
ESP_LOGE(TAG, "Failed to Acquire PowerScheduler Mutex during Current Allocation");
return false;
}
this->currentAllowances.push_back(PowerScheduler::CurrentAllowance{
.consumer = consumer,
.maxSlackTimeMs = 0,
@ -37,6 +42,7 @@ bool PowerScheduler::tryAccquireCurrentAllowance(
.grantedAt = xTaskGetTickCount(),
.granted = true});
this->recalculateCurrentBudgets();
lock.unlock();
return true;
} else {
ESP_LOGI(TAG,
@ -50,6 +56,10 @@ bool PowerScheduler::tryAccquireCurrentAllowance(
}
void PowerScheduler::releaseCurrent(PowerParameters::PowerConsumers consumer) {
PowerSchedulerMutex lock(powerSchedulerMutex);
if (lock.isLocked() == false) {
return;
}
for (auto it = currentAllowances.begin(); it != currentAllowances.end();
++it) {
if (it->consumer == consumer) {
@ -57,6 +67,7 @@ void PowerScheduler::releaseCurrent(PowerParameters::PowerConsumers consumer) {
break;
}
}
lock.unlock();
recalculateCurrentBudgets();
// Check if there are tasks waiting for power
checkWaitingTasks();
@ -81,8 +92,12 @@ bool PowerScheduler::waitForCurrentAllowance(
.neededCurrent = neededCurrent,
.requestedAt = initialTickCount,
.granted = false};
PowerSchedulerMutex lock(powerSchedulerMutex);
if (lock.isLocked() == false) {
return false;
}
this->currentAllowances.push_back(newAllowance);
lock.unlock();
uint32_t notificationValue;
BaseType_t notificationStatus = xTaskNotifyWait(
0, 0, &notificationValue, pdMS_TO_TICKS(maxSlackTimeMs));
@ -103,8 +118,10 @@ bool PowerScheduler::waitForCurrentAllowance(
const bool currentIsInsignificant = neededCurrent < 1;
if (currentIsInsignificant ||
(currentAvailableBelowLimit && currentAvailableBelowMaximum)) {
// TODO Check if there is a currently active allowance for this
// consumer and if so, replace it with the new one
PowerSchedulerMutex lock(powerSchedulerMutex);
if (lock.isLocked() == false) {
return false;
}
if (existingConsumption > 0) {
releaseCurrent(consumer);
}
@ -132,6 +149,10 @@ bool PowerScheduler::waitForCurrentAllowance(
if (notificationStatus == pdFALSE) {
// We waited long enough...
// Remove the task from the list of waiting tasks
PowerSchedulerMutex lock(powerSchedulerMutex);
if (lock.isLocked() == false) {
return false;
}
for (auto it = currentAllowances.begin(); it != currentAllowances.end();
++it) {
if (it->consumer == consumer && it->requestedAt == initialTickCount) {
@ -168,11 +189,16 @@ void PowerScheduler::checkWaitingTasks(void) {
}
void PowerScheduler::recalculateCurrentBudgets(void) {
// Get the respective maximums and subtract currently flowing currents
ESP_LOGI(TAG, "Recalculating current budgets...");
float tempFreeLimitCurrentBudget = Power::getMax3V3Current();
ESP_LOGI(TAG, "Got max 3V3 current: %.2f", tempFreeLimitCurrentBudget);
float tempFreeMaximumCurrentBudget = Power::getMax3V3Current() * 2;
PowerSchedulerMutex lock(powerSchedulerMutex);
if (lock.isLocked() == false) {
return;
}
for (auto &allowance : currentAllowances) {
if (allowance.granted) {
tempFreeLimitCurrentBudget -= allowance.neededCurrent;
@ -187,6 +213,10 @@ void PowerScheduler::recalculateCurrentBudgets(void) {
PowerScheduler::CurrentAllowance *
PowerScheduler::getCurrentAllowance(PowerParameters::PowerConsumers consumer) {
PowerSchedulerMutex lock(powerSchedulerMutex);
if (lock.isLocked() == false) {
return nullptr;
}
for (auto &allowance : currentAllowances) {
if (allowance.consumer == consumer) {
return &allowance;
@ -196,6 +226,10 @@ PowerScheduler::getCurrentAllowance(PowerParameters::PowerConsumers consumer) {
}
PowerScheduler::CurrentAllowance *
PowerScheduler::getCurrentAllowance(TaskHandle_t taskHandle) {
PowerSchedulerMutex lock(powerSchedulerMutex);
if (lock.isLocked() == false) {
return nullptr;
}
for (auto &allowance : currentAllowances) {
if (allowance.taskHandle == taskHandle) {
return &allowance;
@ -205,8 +239,12 @@ PowerScheduler::getCurrentAllowance(TaskHandle_t taskHandle) {
}
PowerScheduler::CurrentAllowance *
PowerScheduler::getNextExpiringAllowance(void) {
PowerSchedulerMutex lock(powerSchedulerMutex);
TickType_t minTicks = UINT32_MAX;
CurrentAllowance *nextAllowance = nullptr;
if (lock.isLocked() == false) {
return nullptr;
}
for (auto &allowance : currentAllowances) {
if (!(allowance.granted)) {
TickType_t ticks =
@ -224,17 +262,17 @@ PowerScheduler::getNextExpiringAllowance(void) {
PowerScheduler &PowerScheduler::getPowerScheduler(float i_limit_ma,
float i_max_ma) {
if (powerSchedulerInstance == nullptr) {
// Double check locking
// https://www.aristeia.com/Papers/DDJ%5FJul%5FAug%5F2004%5Frevised.pdf
if (powerSchedulerInstance == nullptr) {
powerSchedulerInstance = new PowerScheduler(i_limit_ma, i_max_ma);
}
}
return *powerSchedulerInstance;
}
float PowerScheduler::getCurrentCurrent(void) {
float currentSum = 0;
PowerSchedulerMutex lock(powerSchedulerMutex);
if (lock.isLocked() == false) {
return false;
}
for (auto &allowance : currentAllowances) {
if (allowance.granted) {
currentSum += allowance.neededCurrent;
@ -253,6 +291,10 @@ float PowerScheduler::getFreeMaximumCurrentBudget(void) {
float PowerScheduler::getConsumerCurrent(
PowerParameters::PowerConsumers consumer) {
PowerSchedulerMutex lock(powerSchedulerMutex);
if (lock.isLocked() == false) {
return false;
}
float currentSum = 0;
for (auto &allowance : currentAllowances) {
if (allowance.consumer == consumer && allowance.granted) {
@ -266,6 +308,11 @@ PowerScheduler::PowerScheduler(float i_limit_ma, float i_max_ma) {
this->limitCurrent = i_limit_ma;
this->maximumCurrent = i_max_ma;
this->currentAllowances = std::vector<CurrentAllowance>();
this->powerSchedulerMutex = xSemaphoreCreateMutex();
}
PowerScheduler::~PowerScheduler() {}
PowerScheduler::~PowerScheduler() {
if (powerSchedulerMutex != NULL) {
vSemaphoreDelete(powerSchedulerMutex);
}
}

View File

@ -24,8 +24,50 @@
class PowerScheduler {
private:
static constexpr uint16_t DEFAULT_SLACK_TIME_MS = 100;
static constexpr uint16_t MUTEX_TIMEOUT_MS = 10;
SemaphoreHandle_t powerSchedulerMutex;
PowerScheduler(float i_limit_ma, float i_max_ma);
// RAII for mutex
class PowerSchedulerMutex {
private:
SemaphoreHandle_t &mutex;
bool locked;
public:
PowerSchedulerMutex(SemaphoreHandle_t &mutex) : mutex(mutex), locked(false) {
locked =
(xSemaphoreTake(mutex, pdMS_TO_TICKS(MUTEX_TIMEOUT_MS)) == pdTRUE);
if (!locked) {
ESP_LOGW(TAG, "Could not take powerScheduler mutex");
}
}
void unlock() {
if (locked) {
xSemaphoreGive(mutex);
locked = false;
}
}
void lock() {
if (!locked) {
locked = (xSemaphoreTake(mutex, pdMS_TO_TICKS(MUTEX_TIMEOUT_MS)) ==
pdTRUE);
if (!locked) {
ESP_LOGW(TAG, "Could not take power mutex");
}
}
}
~PowerSchedulerMutex() {
if (locked) {
xSemaphoreGive(mutex);
}
}
bool isLocked() { return locked; }
};
public:
~PowerScheduler();
/// @brief Initialize the singleton instance of the power manager
@ -45,9 +87,9 @@ public:
/// @param neededCurrent the amount of current we want to be accounted for (in
/// mA)
/// @return whether the current could be successfully allocated
/// @note This takes existing power consumption by the same consumer into account,
/// so requesting the same or less power will always succeed. Also, small amounts
/// of power (below 1 mA) will always be granted.
/// @note This takes existing power consumption by the same consumer into
/// account, so requesting the same or less power will always succeed. Also,
/// small amounts of power (below 1 mA) will always be granted.
bool tryAccquireCurrentAllowance(PowerParameters::PowerConsumers consumer,
float neededcurrent,
uint16_t requestedDurationMs = 0);