implemented Find a Friend with Frequencydetection using FFT

This commit is contained in:
hhaupt 2024-05-01 22:53:55 +02:00
parent 5a31eb6630
commit f41de7378f
13 changed files with 171353 additions and 6 deletions

View File

@ -0,0 +1,156 @@
#include <Dezibot.h>
#include <arduinoFFT.h>
#include <rom/ets_sys.h>
const uint16_t samples = 256; //This value MUST ALWAYS be a power of 2
const int centeredThreshold = 50 ;
//const float signalFrequency = 1000;
const float samplingFrequency = 4000;
float vReal[4][samples];
float vImag[4][samples];
#define SCL_INDEX 0x00
#define SCL_TIME 0x01
#define SCL_FREQUENCY 0x02
#define SCL_PLOT 0x03
ArduinoFFT<float> FFT = ArduinoFFT<float>(vReal[0], vImag[0], samples, samplingFrequency); /* Create FFT object */
Dezibot dezibot = Dezibot();
void setup() {
dezibot.begin();
Serial.begin(115200);
//dezibot.infraredLight.front.turnOn();
//dezibot.infraredLight.bottom.turnOn();
}
void loop() {
portDISABLE_INTERRUPTS();
for(int i = 0; i < samples; i++){
vReal[0][i] = dezibot.lightDetection.getValue(IR_FRONT);
vImag[0][i] = 0.0;
vReal[1][i] = dezibot.lightDetection.getValue(IR_LEFT);
vImag[1][i] = 0.0;
vReal[2][i] = dezibot.lightDetection.getValue(IR_RIGHT);
vImag[2][i] = 0.0;
vReal[3][i] = dezibot.lightDetection.getValue(IR_BACK);
vImag[3][i] = 0.0;
ets_delay_us(125);
}
portENABLE_INTERRUPTS();
//PrintVector(vReal, (samples>>1), 0);
//PrintVector(vReal, (samples>>1), 0);
float frequency[4];
float magnitude[4];
for(int index = 0; index <4; index++){
FFT.setArrays(vReal[index], vImag[index]);
FFT.windowing(FFTWindow::Rectangle, FFTDirection::Forward); /* Weigh data */
FFT.compute(FFTDirection::Forward); /* Compute FFT */
FFT.complexToMagnitude(); /* Compute magnitudes */
FFT.majorPeak(&frequency[index],&magnitude[index]);
if(abs(frequency[index]-1147)>10){
magnitude[index] = 0;
}
Serial.print(index);
Serial.print(":");
Serial.print(frequency[index]);
Serial.print(",");
Serial.print(index+4);
Serial.print(":");
Serial.print(magnitude[index]);
if(index < 3){
Serial.print(",");
}
Serial.println();
}
//================================================
float leftValue = magnitude[1];
float rightValue = magnitude[2];
switch(brightest(magnitude)){
case IR_FRONT:
//correct Stearing to be centered
if( abs(leftValue-rightValue)
< centeredThreshold){
dezibot.motion.move();
}else{
if (leftValue > rightValue){
dezibot.motion.rotateAntiClockwise();
} else{
dezibot.motion.rotateClockwise();
}
}
dezibot.multiColorLight.setTopLeds(BLUE);
break;
case IR_LEFT:
dezibot.motion.rotateAntiClockwise();
dezibot.multiColorLight.setTopLeds(RED);
break;
case IR_RIGHT:
dezibot.motion.rotateClockwise();
dezibot.multiColorLight.setTopLeds(GREEN);
break;
case IR_BACK:
if(leftValue > rightValue){
dezibot.motion.rotateAntiClockwise();
} else {
dezibot.motion.rotateClockwise();
}
dezibot.multiColorLight.setTopLeds(YELLOW);
break;
}
}
photoTransistors brightest(float *magnitudes){
int pos;
float maxMagnitude = 0;
for(int index = 0; index <4; index++){
if (magnitudes[index] > maxMagnitude){
pos = index;
maxMagnitude = magnitudes[index];
}
}
switch (pos) {
case 0:
return IR_FRONT;
case 1:
return IR_LEFT;
case 2:
return IR_RIGHT;
case 3:
return IR_BACK;
}
}
void PrintVector(float *vData, uint16_t bufferSize, uint8_t scaleType)
{
for (uint16_t i = 0; i < bufferSize; i++)
{
float abscissa;
/* Print abscissa value */
switch (scaleType)
{
case SCL_INDEX:
abscissa = (i * 1.0);
break;
case SCL_TIME:
abscissa = ((i * 1.0) / samplingFrequency);
break;
case SCL_FREQUENCY:
abscissa = ((i * 1.0 * samplingFrequency) / samples);
break;
}
Serial.print(abscissa, 6);
if(scaleType==SCL_FREQUENCY)
Serial.print("Hz");
Serial.print(" ");
Serial.println(vData[i], 4);
}
Serial.println();
}

File diff suppressed because one or more lines are too long

File diff suppressed because one or more lines are too long

View File

@ -1,15 +1,156 @@
#include <Dezibot.h>
#include <arduinoFFT.h>
#include <rom/ets_sys.h>
const uint16_t samples = 256; //This value MUST ALWAYS be a power of 2
const int centeredThreshold = 50 ;
//const float signalFrequency = 1000;
const float samplingFrequency = 4000;
float vReal[4][samples];
float vImag[4][samples];
#define SCL_INDEX 0x00
#define SCL_TIME 0x01
#define SCL_FREQUENCY 0x02
#define SCL_PLOT 0x03
ArduinoFFT<float> FFT = ArduinoFFT<float>(vReal[0], vImag[0], samples, samplingFrequency); /* Create FFT object */
Dezibot dezibot = Dezibot();
void setup() {
dezibot.begin();
Serial.begin(115200);
//dezibot.infraredLight.front.turnOn();
//dezibot.infraredLight.bottom.turnOn();
}
void loop() {
dezibot.infraredLight.bottom.turnOn();
delay(1000);
dezibot.infraredLight.bottom.turnOff();
delay(1000);
portDISABLE_INTERRUPTS();
for(int i = 0; i < samples; i++){
vReal[0][i] = dezibot.lightDetection.getValue(IR_FRONT);
vImag[0][i] = 0.0;
vReal[1][i] = dezibot.lightDetection.getValue(IR_LEFT);
vImag[1][i] = 0.0;
vReal[2][i] = dezibot.lightDetection.getValue(IR_RIGHT);
vImag[2][i] = 0.0;
vReal[3][i] = dezibot.lightDetection.getValue(IR_BACK);
vImag[3][i] = 0.0;
ets_delay_us(125);
}
portENABLE_INTERRUPTS();
//PrintVector(vReal, (samples>>1), 0);
//PrintVector(vReal, (samples>>1), 0);
float frequency[4];
float magnitude[4];
for(int index = 0; index <4; index++){
FFT.setArrays(vReal[index], vImag[index]);
FFT.windowing(FFTWindow::Rectangle, FFTDirection::Forward); /* Weigh data */
FFT.compute(FFTDirection::Forward); /* Compute FFT */
FFT.complexToMagnitude(); /* Compute magnitudes */
FFT.majorPeak(&frequency[index],&magnitude[index]);
if(abs(frequency[index]-1147)>10){
magnitude[index] = 0;
}
Serial.print(index);
Serial.print(":");
Serial.print(frequency[index]);
Serial.print(",");
Serial.print(index+4);
Serial.print(":");
Serial.print(magnitude[index]);
if(index < 3){
Serial.print(",");
}
Serial.println();
}
//================================================
float leftValue = magnitude[1];
float rightValue = magnitude[2];
switch(brightest(magnitude)){
case IR_FRONT:
//correct Stearing to be centered
if( abs(leftValue-rightValue)
< centeredThreshold){
dezibot.motion.move();
}else{
if (leftValue > rightValue){
dezibot.motion.rotateAntiClockwise();
} else{
dezibot.motion.rotateClockwise();
}
}
dezibot.multiColorLight.setTopLeds(BLUE);
break;
case IR_LEFT:
dezibot.motion.rotateAntiClockwise();
dezibot.multiColorLight.setTopLeds(RED);
break;
case IR_RIGHT:
dezibot.motion.rotateClockwise();
dezibot.multiColorLight.setTopLeds(GREEN);
break;
case IR_BACK:
if(leftValue > rightValue){
dezibot.motion.rotateAntiClockwise();
} else {
dezibot.motion.rotateClockwise();
}
dezibot.multiColorLight.setTopLeds(YELLOW);
break;
}
}
photoTransistors brightest(float *magnitudes){
int pos;
float maxMagnitude = 0;
for(int index = 0; index <4; index++){
if (magnitudes[index] > maxMagnitude){
pos = index;
maxMagnitude = magnitudes[index];
}
}
switch (pos) {
case 0:
return IR_FRONT;
case 1:
return IR_LEFT;
case 2:
return IR_RIGHT;
case 3:
return IR_BACK;
}
}
void PrintVector(float *vData, uint16_t bufferSize, uint8_t scaleType)
{
for (uint16_t i = 0; i < bufferSize; i++)
{
float abscissa;
/* Print abscissa value */
switch (scaleType)
{
case SCL_INDEX:
abscissa = (i * 1.0);
break;
case SCL_TIME:
abscissa = ((i * 1.0) / samplingFrequency);
break;
case SCL_FREQUENCY:
abscissa = ((i * 1.0 * samplingFrequency) / samples);
break;
}
Serial.print(abscissa, 6);
if(scaleType==SCL_FREQUENCY)
Serial.print("Hz");
Serial.print(" ");
Serial.println(vData[i], 4);
}
Serial.println();
}

View File

@ -16,7 +16,7 @@ void InfraredLED::begin(void){
.speed_mode = pwmSpeedMode,
.duty_resolution = LEDC_TIMER_10_BIT,
.timer_num = this->timer,
.freq_hz = 1,
.freq_hz = 800,
.clk_cfg = LEDC_AUTO_CLK
};
ledc_timer_config(&pwmTimer);
@ -53,7 +53,7 @@ void InfraredLED::setState(bool state){
};
void InfraredLED::sendFrequency(uint16_t frequency){
ledc_set_freq(pwmSpeedMode,timer,frequency);
// ledc_set_freq(pwmSpeedMode,timer,frequency);
ledc_set_duty(pwmSpeedMode,channel,512);
ledc_update_duty(pwmSpeedMode,channel);
};