cross links plugin - complete rewrite of the geodesic intersection code. seems correct now, but still needs testing
This commit is contained in:
parent
2e87c4f4ac
commit
324ce15745
@ -2,7 +2,7 @@
|
||||
// @id iitc-plugin-cross-links@mcben
|
||||
// @name IITC plugin: cross links
|
||||
// @category Layer
|
||||
// @version 1.0.0.@@DATETIMEVERSION@@
|
||||
// @version 1.1.0.@@DATETIMEVERSION@@
|
||||
// @namespace https://github.com/jonatkins/ingress-intel-total-conversion
|
||||
// @updateURL @@UPDATEURL@@
|
||||
// @downloadURL @@DOWNLOADURL@@
|
||||
@ -21,115 +21,100 @@
|
||||
|
||||
window.plugin.crossLinks = function() {};
|
||||
|
||||
/* Great Circle Arc Intersection
|
||||
Conecpt in short:
|
||||
- build a plane of each arc (p1,p2,center)
|
||||
- find intersection line and intersection points on sphere
|
||||
- check if a point are on both arcs
|
||||
see: http://geospatialmethods.org/spheres/GCAIntersect.html
|
||||
*/
|
||||
var PI = Math.PI;
|
||||
var radians = PI / 180;
|
||||
var near_0 = 1e-6;
|
||||
|
||||
function greatCircleArcIntersect(a0,a1,b0,b1) {
|
||||
window.plugin.crossLinks.greatCircleArcIntersect = function(a0,a1,b0,b1) {
|
||||
// based on the formula at http://williams.best.vwh.net/avform.htm#Int
|
||||
|
||||
function length(x, y, z) {
|
||||
return Math.sqrt(x * x + y * y + z * z);
|
||||
// method:
|
||||
// check to ensure no line segment is zero length - if so, cannot cross
|
||||
// check to see if either of the lines start/end at the same point. if so, then they cannot cross
|
||||
// check to see if the line segments overlap in longitude. if not, no crossing
|
||||
// if overlap, clip each line to the overlapping longitudes, then see if latitudes cross
|
||||
|
||||
// anti-meridian handling. this code will not sensibly handle a case where one point is
|
||||
// close to -180 degrees and the other +180 degrees. unwrap coordinates in this case, so one point
|
||||
// is beyond +-180 degrees. this is already true in IITC
|
||||
// FIXME? if the two lines have been 'unwrapped' differently - one positive, one negative - it will fail
|
||||
|
||||
// zero length line tests
|
||||
if (a0.equals(a1)) return false;
|
||||
if (b0.equals(b1)) return false;
|
||||
|
||||
// lines have a common point
|
||||
if (a0.equals(b0) || a0.equals(b1)) return false;
|
||||
if (a1.equals(b0) || a1.equals(b1)) return false;
|
||||
|
||||
|
||||
// check for 'horizontal' overlap in lngitude
|
||||
if (Math.min(a0.lng,a1.lng) > Math.max(b0.lng,b1.lng)) return false;
|
||||
if (Math.max(a0.lng,a1.lng) < Math.min(b0.lng,b1.lng)) return false;
|
||||
|
||||
|
||||
// ok, our two lines have some horizontal overlap in longitude
|
||||
// 1. calculate the overlapping min/max longitude
|
||||
// 2. calculate each line latitude at each point
|
||||
// 3. if latitudes change place between overlapping range, the lines cross
|
||||
|
||||
|
||||
// class to hold the pre-calculated maths for a geodesic line
|
||||
// TODO: move this outside this function, so it can be pre-calculated once for each line we test
|
||||
var GeodesicLine = function(start,end) {
|
||||
var R = 6378137; // earth radius in meters (doesn't have to be exact)
|
||||
var d2r = Math.PI/180.0;
|
||||
var r2d = 180.0/Math.PI;
|
||||
|
||||
// maths based on http://williams.best.vwh.net/avform.htm#Int
|
||||
|
||||
// only the variables needed to calculate a latitude for a given longitude are stored in 'this'
|
||||
var lat1 = start.lat * d2r;
|
||||
var lat2 = end.lat * d2r;
|
||||
this.lng1 = start.lng * d2r;
|
||||
this.lng2 = end.lng * d2r;
|
||||
|
||||
var dLng = this.lng2-this.lng1;
|
||||
|
||||
var sinLat1 = Math.sin(lat1);
|
||||
var sinLat2 = Math.sin(lat2);
|
||||
var cosLat1 = Math.cos(lat1);
|
||||
var cosLat2 = Math.cos(lat2);
|
||||
|
||||
this.sinLat1CosLat2 = sinLat1*cosLat2;
|
||||
this.sinLat2CosLat1 = sinLat2*cosLat1;
|
||||
|
||||
this.cosLat1CosLat2SinDLng = cosLat1*cosLat2*Math.sin(dLng);
|
||||
}
|
||||
|
||||
// Order points
|
||||
if (a1.lat < a0.lat) { var t=a1;a1=a0;a0=t;}
|
||||
if (b1.lat < b0.lat) { var t=b1;b1=b0;b0=t;}
|
||||
GeodesicLine.prototype.latAtLng = function(lng) {
|
||||
lng = lng * Math.PI / 180; //to radians
|
||||
|
||||
var λ0 = a0.lat,
|
||||
λ1 = a1.lat,
|
||||
λ2 = b0.lat,
|
||||
λ3 = b1.lat,
|
||||
δλ0 = λ1 - λ0,
|
||||
δλ1 = λ3 - λ2,
|
||||
sλ0 = δλ0 > 180,
|
||||
sλ1 = δλ1 > 180,
|
||||
φ0 = a0.lng * radians,
|
||||
φ1 = a1.lng * radians,
|
||||
φ2 = b0.lng * radians,
|
||||
φ3 = b1.lng * radians,
|
||||
t;
|
||||
var lat = Math.atan ( (this.sinLat1CosLat2*Math.sin(this.lng2-lng) + this.sinLat2CosLat1*Math.sin(lng-this.lng1))
|
||||
/ this.cosLat1CosLat2SinDLng);
|
||||
|
||||
// Check if longitude ranges overlap.
|
||||
// TODO handle antimeridian crossings.
|
||||
if (!sλ0 && !sλ1 && (λ0 > λ3 || λ2 > λ1)) return;
|
||||
|
||||
// Check for polar endpoints.
|
||||
if (Math.abs(Math.abs(φ0) - PI / 2) < near_0) λ0 = λ1, δλ0 = 0, sλ0 = false;
|
||||
if (Math.abs(Math.abs(φ1) - PI / 2) < near_0) λ1 = λ0, δλ0 = 0, sλ0 = false;
|
||||
if (Math.abs(Math.abs(φ2) - PI / 2) < near_0) λ2 = λ3, δλ1 = 0, sλ1 = false;
|
||||
if (Math.abs(Math.abs(φ3) - PI / 2) < near_0) λ3 = λ2, δλ1 = 0, sλ1 = false;
|
||||
|
||||
// Check for arcs along meridians.
|
||||
var m0 = δλ0 < near_0 || Math.abs(δλ0 - 180) < near_0,
|
||||
m1 = δλ1 < near_0 || Math.abs(δλ1 - 180) < near_0;
|
||||
|
||||
λ0 *= radians, λ1 *= radians, λ2 *= radians, λ3 *= radians;
|
||||
|
||||
// Intersect two great circles and check the two intersection points against
|
||||
// the longitude ranges. The intersection points are simply the cross
|
||||
// product of the great-circle normals ±n1⨯n2.
|
||||
|
||||
// First plane.
|
||||
var cosφ,
|
||||
x0 = (cosφ = Math.cos(φ0)) * Math.cos(λ0),
|
||||
y0 = cosφ * Math.sin(λ0),
|
||||
z0 = Math.sin(φ0),
|
||||
x1 = (cosφ = Math.cos(φ1)) * Math.cos(λ1),
|
||||
y1 = cosφ * Math.sin(λ1),
|
||||
z1 = Math.sin(φ1),
|
||||
n0x = y0 * z1 - z0 * y1,
|
||||
n0y = z0 * x1 - x0 * z1,
|
||||
n0z = x0 * y1 - y0 * x1,
|
||||
m = length(n0x, n0y, n0z);
|
||||
|
||||
n0x /= m, n0y /= m, n0z /= m;
|
||||
|
||||
// Second plane.
|
||||
var x2 = (cosφ = Math.cos(φ2)) * Math.cos(λ2),
|
||||
y2 = cosφ * Math.sin(λ2),
|
||||
z2 = Math.sin(φ2),
|
||||
x3 = (cosφ = Math.cos(φ3)) * Math.cos(λ3),
|
||||
y3 = cosφ * Math.sin(λ3),
|
||||
z3 = Math.sin(φ3),
|
||||
n1x = y2 * z3 - z2 * y3,
|
||||
n1y = z2 * x3 - x2 * z3,
|
||||
n1z = x2 * y3 - y2 * x3,
|
||||
m = length(n1x, n1y, n1z);
|
||||
|
||||
n1x /= m, n1y /= m, n1z /= m;
|
||||
|
||||
var Nx = n0y * n1z - n0z * n1y,
|
||||
Ny = n0z * n1x - n0x * n1z,
|
||||
Nz = n0x * n1y - n0y * n1x;
|
||||
|
||||
if (length(Nx, Ny, Nz) < near_0) return;
|
||||
|
||||
var λ = Math.atan2(Ny, Nx);
|
||||
if ( (sλ0 ^ (λ0 <= λ && λ <= λ1) || m0 && Math.abs(λ - λ0) < near_0) && (sλ1 ^ (λ2 <= λ && λ <= λ3) || m1 && Math.abs(λ - λ2) < near_0) || (Nz = -Nz,
|
||||
(sλ0 ^ (λ0 <= (λ = (λ + 2 * PI) % (2 * PI) - PI) && λ <= λ1) || m0 && Math.abs(λ - λ0) < near_0) && (sλ1 ^ (λ2 <= λ && λ <= λ3) || m1 && Math.abs(λ - λ2) < near_0))) {
|
||||
|
||||
var φ = Math.asin(Nz / length(Nx, Ny, Nz));
|
||||
|
||||
if (m0 || m1) {
|
||||
if (m1) φ0 = φ2, φ1 = φ3, λ0 = λ2, λ1 = λ3, δλ0 = δλ1;
|
||||
|
||||
if (δλ0 > near_0)
|
||||
return (φ0 + φ1 > 0 ^ φ < (Math.abs(λ - λ0) < near_0 ? φ0 : φ1)) ? [λ / radians, φ / radians] : null;
|
||||
|
||||
// Ensure φ0 ≤ φ1.
|
||||
if (φ1 < φ0) t = φ0, φ0 = φ1, φ1 = t;
|
||||
return (Math.abs(λ - (m0 ? λ0 : λ2)) < near_0 && φ0 <= φ && φ <= φ1) ? [λ / radians, φ / radians] : null;
|
||||
return lat * 180 / Math.PI; // return value in degrees
|
||||
}
|
||||
|
||||
return [λ / radians, φ / radians];
|
||||
}
|
||||
|
||||
// calculate the longitude of the overlapping region
|
||||
var leftLng = Math.max( Math.min(a0.lng,a1.lng), Math.min(b0.lng,b1.lng) );
|
||||
var rightLng = Math.min( Math.max(a0.lng,a1.lng), Math.max(b0.lng,b1.lng) );
|
||||
|
||||
// prepare geodesic line maths
|
||||
var aGeo = new GeodesicLine(a0,a1);
|
||||
var bGeo = new GeodesicLine(b0,b1);
|
||||
|
||||
// calculate the latitudes for each line at left + right points
|
||||
var aLeftLat = aGeo.latAtLng(leftLng);
|
||||
var aRightLat = aGeo.latAtLng(rightLng);
|
||||
|
||||
var bLeftLat = bGeo.latAtLng(leftLng);
|
||||
var bRightLat = bGeo.latAtLng(rightLng);
|
||||
|
||||
// if both a are less or greater than both b, then lines do not cross
|
||||
if (aLeftLat < bLeftLat && aRightLat < bRightLat) return false;
|
||||
if (aLeftLat > bLeftLat && aRightLat > bRightLat) return false;
|
||||
|
||||
// latitudes cross between left and right - so geodesic lines cross
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
@ -140,11 +125,11 @@ window.plugin.crossLinks.testPolyLine = function (polyline, link,closed) {
|
||||
var b = polyline.getLatLngs();
|
||||
|
||||
for (var i=0;i<b.length-1;++i) {
|
||||
if (greatCircleArcIntersect(a[0],a[1],b[i],b[i+1])) return true;
|
||||
if (window.plugin.crossLinks.greatCircleArcIntersect(a[0],a[1],b[i],b[i+1])) return true;
|
||||
}
|
||||
|
||||
if (closed) {
|
||||
if (greatCircleArcIntersect(a[0],a[1],b[b.length-1],b[0])) return true;
|
||||
if (window.plugin.crossLinks.greatCircleArcIntersect(a[0],a[1],b[b.length-1],b[0])) return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
|
Loading…
x
Reference in New Issue
Block a user