add gyro-based compass

This commit is contained in:
fkloft 2015-01-22 17:54:26 +01:00
parent cd8186ffa3
commit 8142544442
3 changed files with 381 additions and 6 deletions

View File

@ -7,7 +7,6 @@ import android.location.LocationManager;
import android.os.Bundle;
import android.view.Surface;
import com.cradle.iitc_mobile.compass.AccMagCompass;
import com.cradle.iitc_mobile.compass.Compass;
import com.cradle.iitc_mobile.compass.CompassListener;
@ -28,7 +27,7 @@ public class IITC_UserLocation implements CompassListener, LocationListener {
public IITC_UserLocation(final IITC_Mobile iitc) {
mIitc = iitc;
mCompass = new AccMagCompass(mIitc);
mCompass = Compass.getDefaultCompass(mIitc);
// Acquire a reference to the Location Manager and Sensor Manager
mLocationManager = (LocationManager) iitc.getSystemService(Context.LOCATION_SERVICE);

View File

@ -1,22 +1,37 @@
package com.cradle.iitc_mobile.compass;
import android.content.Context;
import android.hardware.Sensor;
import android.hardware.SensorManager;
import java.util.ArrayList;
public abstract class Compass
{
public static Compass getDefaultCompass(final Context context) {
final Sensor gyro = ((SensorManager) context.getSystemService(Context.SENSOR_SERVICE))
.getDefaultSensor(Sensor.TYPE_GYROSCOPE);
if (gyro != null)
return new GyroCompass(context);
else
return new AccMagCompass(context);
}
private final ArrayList<CompassListener> mListeners = new ArrayList<CompassListener>();
private boolean mStarted = false;
protected abstract void onStart();
protected abstract void onStop();
protected void publishOrientation(final float x, final float y, final float z)
{
for (final CompassListener listener : mListeners)
listener.onCompassChanged(x, y, z);
}
protected abstract void onStart();
protected abstract void onStop();
public void registerListener(final CompassListener listener)
{
mListeners.add(listener);

View File

@ -0,0 +1,361 @@
/************************************************************************************
* Copyright (c) 2012 Paul Lawitzki
* Permission is hereby granted, free of charge, to any person obtaining
* a copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
* The above copyright notice and this permission notice shall be included
* in all copies or substantial portions of the Software.
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
* OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
* IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE
* OR OTHER DEALINGS IN THE SOFTWARE.
************************************************************************************/
package com.cradle.iitc_mobile.compass;
import android.content.Context;
import android.hardware.Sensor;
import android.hardware.SensorEvent;
import android.hardware.SensorEventListener;
import android.hardware.SensorManager;
import android.os.Handler;
import java.util.Timer;
import java.util.TimerTask;
public class GyroCompass extends Compass
{
private static final float EPSILON = 0.000000001f;
private static final float FILTER_COEFFICIENT = 0.98f;
private static final float NS2S = 1.0f / 1000000000.0f;
private static final int TIME_CONSTANT = 30;
private final AccMagCompass mAccMagCompass;
private final AccMagListener mAccMagListener = new AccMagListener();
// orientation angles from accel and magnet
private float[] mAccMagOrientation = null;
private final Context mContext;
// final orientation angles from sensor fusion
private final float[] mFusedOrientation = new float[3];
private final Timer mFuseTimer = new Timer();
// angular speeds from gyro
private final float[] mGyro = new float[3];
// rotation matrix from gyro data
private float[] mGyroMatrix = null;
// orientation angles from gyro matrix
private final float[] mGyroOrientation = { 0, 0, 0 };
private final Sensor mSensor;
private final SensorListener mSensorListener = new SensorListener();
private SensorManager mSensorManager = null;
private FuseOrientationTask mTask;
private long mTimestamp;
private final Runnable mUpdateRunnable = new Runnable()
{
@Override
public void run()
{
publishOrientation(mFusedOrientation[0], mFusedOrientation[1], mFusedOrientation[2]);
}
};
public GyroCompass(final Context context)
{
this(context, new AccMagCompass(context));
}
public GyroCompass(final Context context, final AccMagCompass compass)
{
super();
mContext = context;
mAccMagCompass = compass;
// get sensorManager and initialise sensor listeners
mSensorManager = (SensorManager) mContext.getSystemService(Context.SENSOR_SERVICE);
mSensor = mSensorManager.getDefaultSensor(Sensor.TYPE_GYROSCOPE);
}
private float[] getRotationMatrixFromOrientation(final float[] o)
{
final float[] xM = new float[9];
final float[] yM = new float[9];
final float[] zM = new float[9];
final float sinX = (float) Math.sin(o[1]);
final float cosX = (float) Math.cos(o[1]);
final float sinY = (float) Math.sin(o[2]);
final float cosY = (float) Math.cos(o[2]);
final float sinZ = (float) Math.sin(o[0]);
final float cosZ = (float) Math.cos(o[0]);
// rotation about x-axis (pitch)
xM[0] = 1.0f;
xM[1] = 0.0f;
xM[2] = 0.0f;
xM[3] = 0.0f;
xM[4] = cosX;
xM[5] = sinX;
xM[6] = 0.0f;
xM[7] = -sinX;
xM[8] = cosX;
// rotation about y-axis (roll)
yM[0] = cosY;
yM[1] = 0.0f;
yM[2] = sinY;
yM[3] = 0.0f;
yM[4] = 1.0f;
yM[5] = 0.0f;
yM[6] = -sinY;
yM[7] = 0.0f;
yM[8] = cosY;
// rotation about z-axis (azimuth)
zM[0] = cosZ;
zM[1] = sinZ;
zM[2] = 0.0f;
zM[3] = -sinZ;
zM[4] = cosZ;
zM[5] = 0.0f;
zM[6] = 0.0f;
zM[7] = 0.0f;
zM[8] = 1.0f;
// rotation order is y, x, z (roll, pitch, azimuth)
float[] resultMatrix = matrixMultiplication(xM, yM);
resultMatrix = matrixMultiplication(zM, resultMatrix);
return resultMatrix;
}
// This function is borrowed from the Android reference
// at http://developer.android.com/reference/android/hardware/SensorEvent.html#values
// It calculates a rotation vector from the gyroscope angular speed values.
private void getRotationVectorFromGyro(final float[] values, final float[] deltaRotationVector, final float time)
{
final float[] normValues = new float[3];
// Calculate the angular speed of the sample
final float omegaMagnitude =
(float) Math.sqrt(values[0] * values[0] + values[1] * values[1] + values[2] * values[2]);
// Normalize the rotation vector if it's big enough to get the axis
if (omegaMagnitude > EPSILON)
{
normValues[0] = values[0] / omegaMagnitude;
normValues[1] = values[1] / omegaMagnitude;
normValues[2] = values[2] / omegaMagnitude;
}
// Integrate around this axis with the angular speed by the timestep
// in order to get a delta rotation from this sample over the timestep
// We will convert this axis-angle representation of the delta rotation
// into a quaternion before turning it into the rotation matrix.
final float thetaOverTwo = omegaMagnitude * time;
final float sinThetaOverTwo = (float) Math.sin(thetaOverTwo);
final float cosThetaOverTwo = (float) Math.cos(thetaOverTwo);
deltaRotationVector[0] = sinThetaOverTwo * normValues[0];
deltaRotationVector[1] = sinThetaOverTwo * normValues[1];
deltaRotationVector[2] = sinThetaOverTwo * normValues[2];
deltaRotationVector[3] = cosThetaOverTwo;
}
private float[] matrixMultiplication(final float[] A, final float[] B)
{
final float[] result = new float[9];
result[0] = A[0] * B[0] + A[1] * B[3] + A[2] * B[6];
result[1] = A[0] * B[1] + A[1] * B[4] + A[2] * B[7];
result[2] = A[0] * B[2] + A[1] * B[5] + A[2] * B[8];
result[3] = A[3] * B[0] + A[4] * B[3] + A[5] * B[6];
result[4] = A[3] * B[1] + A[4] * B[4] + A[5] * B[7];
result[5] = A[3] * B[2] + A[4] * B[5] + A[5] * B[8];
result[6] = A[6] * B[0] + A[7] * B[3] + A[8] * B[6];
result[7] = A[6] * B[1] + A[7] * B[4] + A[8] * B[7];
result[8] = A[6] * B[2] + A[7] * B[5] + A[8] * B[8];
return result;
}
// This function performs the integration of the gyroscope data.
// It writes the gyroscope based orientation into gyroOrientation.
private void onGyroChanged(final SensorEvent event)
{
// don't start until first accelerometer/magnetometer orientation has been acquired
if (mAccMagOrientation == null)
return;
// initialisation of the gyroscope based rotation matrix
if (mGyroMatrix == null)
mGyroMatrix = getRotationMatrixFromOrientation(mAccMagOrientation);
// copy the new gyro values into the gyro array
// convert the raw gyro data into a rotation vector
final float[] deltaVector = new float[4];
if (mTimestamp != 0)
{
final float dT = (event.timestamp - mTimestamp) * NS2S;
System.arraycopy(event.values, 0, mGyro, 0, 3);
getRotationVectorFromGyro(mGyro, deltaVector, dT / 2.0f);
}
// measurement done, save current time for next interval
mTimestamp = event.timestamp;
// convert rotation vector into rotation matrix
final float[] deltaMatrix = new float[9];
SensorManager.getRotationMatrixFromVector(deltaMatrix, deltaVector);
// apply the new rotation interval on the gyroscope based rotation matrix
mGyroMatrix = matrixMultiplication(mGyroMatrix, deltaMatrix);
// get the gyroscope based orientation from the rotation matrix
SensorManager.getOrientation(mGyroMatrix, mGyroOrientation);
}
@Override
protected void onStart()
{
// restore the sensor listeners when user resumes the application.
mSensorManager.registerListener(mSensorListener, mSensor, SensorManager.SENSOR_DELAY_UI);
mAccMagCompass.registerListener(mAccMagListener);
mTask = new FuseOrientationTask();
mFuseTimer.scheduleAtFixedRate(mTask, 200, TIME_CONSTANT);
}
@Override
protected void onStop()
{
mSensorManager.unregisterListener(mSensorListener);
mAccMagCompass.unregisterListener(mAccMagListener);
mTask.cancel();
}
private class AccMagListener implements CompassListener
{
@Override
public void onCompassChanged(final float x, final float y, final float z)
{
if (mAccMagOrientation == null)
{
mGyroOrientation[0] = x;
mGyroOrientation[1] = y;
mGyroOrientation[2] = z;
}
mAccMagOrientation = new float[] { x, y, z };
}
}
private class FuseOrientationTask extends TimerTask
{
private final Handler mHandler = new Handler();
@Override
public void run()
{
if (mAccMagOrientation == null)
return;
final float oneMinusCoeff = 1.0f - FILTER_COEFFICIENT;
/*
* Fix for 179° <--> -179° transition problem:
* Check whether one of the two orientation angles (gyro or accMag) is negative while the
* other one is positive.
* If so, add 360° (2 * math.PI) to the negative value, perform the sensor fusion, and remove
* the 360° from the result
* if it is greater than 180°. This stabilizes the output in positive-to-negative-transition
* cases.
*/
// azimuth
if (mGyroOrientation[0] < -0.5 * Math.PI && mAccMagOrientation[0] > 0.0)
{
mFusedOrientation[0] = (float) (FILTER_COEFFICIENT *
(mGyroOrientation[0] + 2.0 * Math.PI) + oneMinusCoeff * mAccMagOrientation[0]);
mFusedOrientation[0] -= (mFusedOrientation[0] > Math.PI) ? 2.0 * Math.PI : 0;
}
else if (mAccMagOrientation[0] < -0.5 * Math.PI && mGyroOrientation[0] > 0.0)
{
mFusedOrientation[0] = (float) (FILTER_COEFFICIENT * mGyroOrientation[0] +
oneMinusCoeff * (mAccMagOrientation[0] + 2.0 * Math.PI));
mFusedOrientation[0] -= (mFusedOrientation[0] > Math.PI) ? 2.0 * Math.PI : 0;
}
else
{
mFusedOrientation[0] = FILTER_COEFFICIENT * mGyroOrientation[0] +
oneMinusCoeff * mAccMagOrientation[0];
}
// pitch
if (mGyroOrientation[1] < -0.5 * Math.PI && mAccMagOrientation[1] > 0.0)
{
mFusedOrientation[1] = (float) (FILTER_COEFFICIENT *
(mGyroOrientation[1] + 2.0 * Math.PI) + oneMinusCoeff * mAccMagOrientation[1]);
mFusedOrientation[1] -= (mFusedOrientation[1] > Math.PI) ? 2.0 * Math.PI : 0;
}
else if (mAccMagOrientation[1] < -0.5 * Math.PI && mGyroOrientation[1] > 0.0)
{
mFusedOrientation[1] = (float) (FILTER_COEFFICIENT * mGyroOrientation[1] +
oneMinusCoeff * (mAccMagOrientation[1] + 2.0 * Math.PI));
mFusedOrientation[1] -= (mFusedOrientation[1] > Math.PI) ? 2.0 * Math.PI : 0;
}
else
{
mFusedOrientation[1] = FILTER_COEFFICIENT * mGyroOrientation[1] +
oneMinusCoeff * mAccMagOrientation[1];
}
// roll
if (mGyroOrientation[2] < -0.5 * Math.PI && mAccMagOrientation[2] > 0.0)
{
mFusedOrientation[2] = (float) (FILTER_COEFFICIENT *
(mGyroOrientation[2] + 2.0 * Math.PI) + oneMinusCoeff * mAccMagOrientation[2]);
mFusedOrientation[2] -= (mFusedOrientation[2] > Math.PI) ? 2.0 * Math.PI : 0;
}
else if (mAccMagOrientation[2] < -0.5 * Math.PI && mGyroOrientation[2] > 0.0)
{
mFusedOrientation[2] = (float) (FILTER_COEFFICIENT * mGyroOrientation[2] +
oneMinusCoeff * (mAccMagOrientation[2] + 2.0 * Math.PI));
mFusedOrientation[2] -= (mFusedOrientation[2] > Math.PI) ? 2.0 * Math.PI : 0;
}
else
{
mFusedOrientation[2] = FILTER_COEFFICIENT * mGyroOrientation[2] +
oneMinusCoeff * mAccMagOrientation[2];
}
// overwrite gyro matrix and orientation with fused orientation
// to comensate gyro drift
mGyroMatrix = getRotationMatrixFromOrientation(mFusedOrientation);
System.arraycopy(mFusedOrientation, 0, mGyroOrientation, 0, 3);
// update sensor output in GUI
mHandler.post(mUpdateRunnable);
}
}
private class SensorListener implements SensorEventListener
{
@Override
public void onAccuracyChanged(final Sensor sensor, final int accuracy)
{
}
@Override
public void onSensorChanged(final SensorEvent event)
{
onGyroChanged(event);
}
}
}