2013-11-22 23:31:05 -08:00

244 lines
8.1 KiB
JavaScript

/*
Geodesic extension to Leaflet library, by Fragger
https://github.com/Fragger/Leaflet.Geodesic
Version from master branch, dated Apr 26, 2013
Modified by qnstie 2013-07-17 to maintain compatibility with Leaflet.draw
*/
(function () {
function geodesicPoly(Klass, fill) {
return Klass.extend({
initialize: function (latlngs, options) {
Klass.prototype.initialize.call(this, L.geodesicConvertLines(latlngs, fill), options);
this._latlngsinit = this._convertLatLngs(latlngs);
},
getLatLngs: function () {
return this._latlngsinit;
},
setLatLngs: function (latlngs) {
this._latlngsinit = this._convertLatLngs(latlngs);
return this.redraw();
},
addLatLng: function (latlng) {
this._latlngsinit.push(L.latLng(latlng));
return this.redraw();
},
spliceLatLngs: function () { // (Number index, Number howMany)
var removed = [].splice.apply(this._latlngsinit, arguments);
this._convertLatLngs(this._latlngsinit);
this.redraw();
return removed;
},
redraw: function() {
this._latlngs = this._convertLatLngs(L.geodesicConvertLines(this._latlngsinit, fill));
return Klass.prototype.redraw.call(this);
}
});
}
function geodesicConvertLine(startLatlng, endLatlng, convertedPoints) {
var i,
R = 6378137, // earth radius in meters (doesn't have to be exact)
maxlength = 5000, // meters before splitting
d2r = L.LatLng.DEG_TO_RAD,
r2d = L.LatLng.RAD_TO_DEG,
lat1, lat2, lng1, lng2, dLng, d, segments,
f, A, B, x, y, z, fLat, fLng;
dLng = (endLatlng.lng - startLatlng.lng) * d2r;
lat1 = startLatlng.lat * d2r;
lat2 = endLatlng.lat * d2r;
lng1 = startLatlng.lng * d2r;
lng2 = endLatlng.lng * d2r;
// http://en.wikipedia.org/wiki/Great-circle_distance
d = Math.atan2(Math.sqrt( Math.pow(Math.cos(lat2) * Math.sin(dLng), 2) + Math.pow(Math.cos(lat1) * Math.sin(lat2) - Math.sin(lat1) * Math.cos(lat2) * Math.cos(dLng), 2) ), Math.sin(lat1) * Math.sin(lat2) + Math.cos(lat1) * Math.cos(lat2) * Math.cos(dLng));
segments = Math.ceil(d * R / maxlength);
// loop starts at 1 - we don't add the very first point
// loop ends before 'segments' is reached - we don't add the very last point here but outside the loop
// (this was to fix a bug - https://github.com/jonatkins/ingress-intel-total-conversion/issues/471
// rounding errors? maths bug? not sure - but it solves the issue! and is a slight optimisation)
for (i = 1; i < segments; i++) {
// http://williams.best.vwh.net/avform.htm#Intermediate
// modified to handle longitude above +-180 degrees
f = i / segments;
A = Math.sin((1-f)*d) / Math.sin(d);
B = Math.sin(f*d) / Math.sin(d);
x = A * Math.cos(lat1) * Math.cos(0) + B * Math.cos(lat2) * Math.cos(dLng);
y = A * Math.cos(lat1) * Math.sin(0) + B * Math.cos(lat2) * Math.sin(dLng);
z = A * Math.sin(lat1) + B * Math.sin(lat2);
fLat = r2d * Math.atan2(z, Math.sqrt(Math.pow(x, 2) + Math.pow(y, 2)));
fLng = r2d * (Math.atan2(y, x)+lng1);
convertedPoints.push(L.latLng([fLat, fLng]));
}
// push the final point unmodified
convertedPoints.push(L.latLng(endLatlng));
}
L.geodesicConvertLines = function (latlngs, fill) {
if (latlngs.length == 0) {
return [];
}
for (var i = 0, len = latlngs.length; i < len; i++) {
if (L.Util.isArray(latlngs[i]) && typeof latlngs[i][0] !== 'number') {
return;
}
latlngs[i] = L.latLng(latlngs[i]);
}
// geodesic calculations have issues when crossing the anti-meridian. so offset the points
// so this isn't an issue, then add back the offset afterwards
// a center longitude would be ideal - but the start point logitude will be 'good enough'
var lngOffset = latlngs[0].lng;
// points are wrapped after being offset relative to the first point coordinate, so they're
// within +-180 degrees
latlngs = latlngs.map(function(a){ return L.latLng(a.lat, a.lng-lngOffset).wrap(); });
var geodesiclatlngs = [];
if(!fill) {
geodesiclatlngs.push(latlngs[0]);
}
for (i = 0, len = latlngs.length - 1; i < len; i++) {
geodesicConvertLine(latlngs[i], latlngs[i+1], geodesiclatlngs);
}
if(fill) {
geodesicConvertLine(latlngs[len], latlngs[0], geodesiclatlngs);
}
// now add back the offset subtracted above. no wrapping here - the drawing code handles
// things better when there's no sudden jumps in coordinates. yes, lines will extend
// beyond +-180 degrees - but they won't be 'broken'
geodesiclatlngs = geodesiclatlngs.map(function(a){ return L.latLng(a.lat, a.lng+lngOffset); });
return geodesiclatlngs;
}
L.GeodesicPolyline = geodesicPoly(L.Polyline, 0);
L.GeodesicPolygon = geodesicPoly(L.Polygon, 1);
//L.GeodesicMultiPolyline = createMulti(L.GeodesicPolyline);
//L.GeodesicMultiPolygon = createMulti(L.GeodesicPolygon);
/*L.GeodesicMultiPolyline = L.MultiPolyline.extend({
initialize: function (latlngs, options) {
L.MultiPolyline.prototype.initialize.call(this, L.geodesicConvertLines(latlngs), options);
}
});*/
/*L.GeodesicMultiPolygon = L.MultiPolygon.extend({
initialize: function (latlngs, options) {
L.MultiPolygon.prototype.initialize.call(this, L.geodesicConvertLines(latlngs), options);
}
});*/
L.GeodesicCircle = L.Polygon.extend({
initialize: function (latlng, radius, options) {
this._latlng = L.latLng(latlng);
this._mRadius = radius;
points = this._calcPoints();
L.Polygon.prototype.initialize.call(this, points, options);
},
options: {
fill: true
},
setLatLng: function (latlng) {
this._latlng = L.latLng(latlng);
points = this._calcPoints();
this.setLatLngs(points);
},
setRadius: function (radius) {
this._mRadius = radius;
points = this._calcPoints();
this.setLatLngs(points);
},
getLatLng: function () {
return this._latlng;
},
getRadius: function() {
return this._mRadius;
},
_calcPoints: function() {
var R = 6378137; //earth radius in meters (approx - taken from leaflet source code)
var d2r = L.LatLng.DEG_TO_RAD;
var r2d = L.LatLng.RAD_TO_DEG;
//console.log("geodesicCircle: radius = "+this._mRadius+"m, centre "+this._latlng.lat+","+this._latlng.lng);
// circle radius as an angle from the centre of the earth
var radRadius = this._mRadius / R;
//console.log(" (radius in radians "+radRadius);
// pre-calculate various values used for every point on the circle
var centreLat = this._latlng.lat * d2r;
var centreLng = this._latlng.lng * d2r;
var cosCentreLat = Math.cos(centreLat);
var sinCentreLat = Math.sin(centreLat);
var cosRadRadius = Math.cos(radRadius);
var sinRadRadius = Math.sin(radRadius);
var calcLatLngAtAngle = function(angle) {
var lat = Math.asin(sinCentreLat*cosRadRadius + cosCentreLat*sinRadRadius*Math.cos(angle));
var lng = centreLng + Math.atan2(Math.sin(angle)*sinRadRadius*cosCentreLat, cosRadRadius-sinCentreLat*Math.sin(lat));
return L.latLng(lat * r2d,lng * r2d);
}
var segments = Math.max(32,Math.floor(this._mRadius/1000));
//console.log(" (drawing circle as "+segments+" lines)");
var points = [];
for (var i=0; i<segments; i++) {
var angle = Math.PI*2/segments*i;
var point = calcLatLngAtAngle(angle)
points.push ( point );
}
return points;
},
});
L.geodesicPolyline = function (latlngs, options) {
return new L.GeodesicPolyline(latlngs, options);
};
L.geodesicPolygon = function (latlngs, options) {
return new L.GeodesicPolygon(latlngs, options);
};
/*
L.geodesicMultiPolyline = function (latlngs, options) {
return new L.GeodesicMultiPolyline(latlngs, options);
};
L.geodesicMultiPolygon = function (latlngs, options) {
return new L.GeodesicMultiPolygon(latlngs, options);
};
*/
L.geodesicCircle = function (latlng, radius, options) {
return new L.GeodesicCircle(latlng, radius, options);
}
}());