223 lines
7.2 KiB
JavaScript
223 lines
7.2 KiB
JavaScript
/*
|
|
Geodesic extension to Leaflet library, by Fragger
|
|
https://github.com/Fragger/Leaflet.Geodesic
|
|
Version from master branch, dated Apr 26, 2013
|
|
Modified by qnstie 2013-07-17 to maintain compatibility with Leaflet.draw
|
|
*/
|
|
(function () {
|
|
function geodesicPoly(Klass, fill) {
|
|
return Klass.extend({
|
|
initialize: function (latlngs, options) {
|
|
Klass.prototype.initialize.call(this, L.geodesicConvertLines(latlngs, fill), options);
|
|
this._latlngsinit = this._convertLatLngs(latlngs);
|
|
},
|
|
getLatLngs: function () {
|
|
return this._latlngsinit;
|
|
},
|
|
setLatLngs: function (latlngs) {
|
|
this._latlngsinit = this._convertLatLngs(latlngs);
|
|
return this.redraw();
|
|
},
|
|
addLatLng: function (latlng) {
|
|
this._latlngsinit.push(L.latLng(latlng));
|
|
return this.redraw();
|
|
},
|
|
spliceLatLngs: function () { // (Number index, Number howMany)
|
|
var removed = [].splice.apply(this._latlngsinit, arguments);
|
|
this._convertLatLngs(this._latlngsinit);
|
|
this.redraw();
|
|
return removed;
|
|
},
|
|
redraw: function() {
|
|
this._latlngs = this._convertLatLngs(L.geodesicConvertLines(this._latlngsinit, fill));
|
|
return Klass.prototype.redraw.call(this);
|
|
}
|
|
});
|
|
}
|
|
|
|
function geodesicConvertLine(startLatlng, endLatlng, convertedPoints) {
|
|
var i,
|
|
R = 6378137, // earth radius in meters (doesn't have to be exact)
|
|
maxlength = 5000, // meters before splitting
|
|
d2r = L.LatLng.DEG_TO_RAD,
|
|
r2d = L.LatLng.RAD_TO_DEG,
|
|
lat1, lat2, lng1, lng2, dLng, d, segments,
|
|
f, A, B, x, y, z, fLat, fLng;
|
|
|
|
dLng = Math.abs(endLatlng.lng - startLatlng.lng) * d2r;
|
|
lat1 = startLatlng.lat * d2r;
|
|
lat2 = endLatlng.lat * d2r;
|
|
lng1 = startLatlng.lng * d2r;
|
|
lng2 = endLatlng.lng * d2r;
|
|
|
|
// http://en.wikipedia.org/wiki/Great-circle_distance
|
|
d = Math.atan2(Math.sqrt( Math.pow(Math.cos(lat2) * Math.sin(dLng), 2) + Math.pow(Math.cos(lat1) * Math.sin(lat2) - Math.sin(lat1) * Math.cos(lat2) * Math.cos(dLng), 2) ), Math.sin(lat1) * Math.sin(lat2) + Math.cos(lat1) * Math.cos(lat2) * Math.cos(dLng));
|
|
|
|
segments = Math.ceil(d * R / maxlength);
|
|
// loop starts at 1 - we don't add the very first point
|
|
// loop ends before 'segments' is reached - we don't add the very last point here but outside the loop
|
|
// (this was to fix a bug - https://github.com/jonatkins/ingress-intel-total-conversion/issues/471
|
|
// rounding errors? maths bug? not sure - but it solves the issue! and is a slight optimisation)
|
|
for (i = 1; i < segments; i++) {
|
|
// http://williams.best.vwh.net/avform.htm#Intermediate
|
|
f = i / segments;
|
|
A = Math.sin((1-f)*d) / Math.sin(d);
|
|
B = Math.sin(f*d) / Math.sin(d);
|
|
x = A * Math.cos(lat1) * Math.cos(lng1) + B * Math.cos(lat2) * Math.cos(lng2);
|
|
y = A * Math.cos(lat1) * Math.sin(lng1) + B * Math.cos(lat2) * Math.sin(lng2);
|
|
z = A * Math.sin(lat1) + B * Math.sin(lat2);
|
|
fLat = r2d * Math.atan2(z, Math.sqrt(Math.pow(x, 2) + Math.pow(y, 2)));
|
|
fLng = r2d * Math.atan2(y, x);
|
|
|
|
convertedPoints.push(L.latLng([fLat, fLng]));
|
|
}
|
|
// push the final point unmodified
|
|
convertedPoints.push(L.latLng(endLatlng));
|
|
}
|
|
|
|
L.geodesicConvertLines = function (latlngs, fill) {
|
|
var i, j, len, geodesiclatlngs = [];
|
|
for (i = 0, len = latlngs.length; i < len; i++) {
|
|
if (L.Util.isArray(latlngs[i]) && typeof latlngs[i][0] !== 'number') {
|
|
return;
|
|
}
|
|
latlngs[i] = L.latLng(latlngs[i]);
|
|
}
|
|
|
|
if(!fill) {
|
|
geodesiclatlngs.push(latlngs[0]);
|
|
}
|
|
for (i = 0, len = latlngs.length - 1; i < len; i++) {
|
|
geodesicConvertLine(latlngs[i], latlngs[i+1], geodesiclatlngs);
|
|
}
|
|
if(fill) {
|
|
geodesicConvertLine(latlngs[len], latlngs[0], geodesiclatlngs);
|
|
}
|
|
return geodesiclatlngs;
|
|
}
|
|
|
|
L.GeodesicPolyline = geodesicPoly(L.Polyline, 0);
|
|
L.GeodesicPolygon = geodesicPoly(L.Polygon, 1);
|
|
|
|
//L.GeodesicMultiPolyline = createMulti(L.GeodesicPolyline);
|
|
//L.GeodesicMultiPolygon = createMulti(L.GeodesicPolygon);
|
|
|
|
/*L.GeodesicMultiPolyline = L.MultiPolyline.extend({
|
|
initialize: function (latlngs, options) {
|
|
L.MultiPolyline.prototype.initialize.call(this, L.geodesicConvertLines(latlngs), options);
|
|
}
|
|
});*/
|
|
|
|
/*L.GeodesicMultiPolygon = L.MultiPolygon.extend({
|
|
initialize: function (latlngs, options) {
|
|
L.MultiPolygon.prototype.initialize.call(this, L.geodesicConvertLines(latlngs), options);
|
|
}
|
|
});*/
|
|
|
|
|
|
L.GeodesicCircle = L.Polygon.extend({
|
|
initialize: function (latlng, radius, options) {
|
|
this._latlng = L.latLng(latlng);
|
|
this._mRadius = radius;
|
|
|
|
points = this._calcPoints();
|
|
|
|
L.Polygon.prototype.initialize.call(this, points, options);
|
|
},
|
|
|
|
options: {
|
|
fill: true
|
|
},
|
|
|
|
setLatLng: function (latlng) {
|
|
this._latlng = L.latLng(latlng);
|
|
points = this._calcPoints();
|
|
this.setLatLngs(points);
|
|
},
|
|
|
|
setRadius: function (radius) {
|
|
this._mRadius = radius;
|
|
points = this._calcPoints();
|
|
this.setLatLngs(points);
|
|
|
|
},
|
|
|
|
getLatLng: function () {
|
|
return this._latlng;
|
|
},
|
|
|
|
getRadius: function() {
|
|
return this._mRadius;
|
|
},
|
|
|
|
|
|
_calcPoints: function() {
|
|
var R = 6378137; //earth radius in meters (approx - taken from leaflet source code)
|
|
var d2r = L.LatLng.DEG_TO_RAD;
|
|
var r2d = L.LatLng.RAD_TO_DEG;
|
|
//console.log("geodesicCircle: radius = "+this._mRadius+"m, centre "+this._latlng.lat+","+this._latlng.lng);
|
|
|
|
// circle radius as an angle from the centre of the earth
|
|
var radRadius = this._mRadius / R;
|
|
|
|
//console.log(" (radius in radians "+radRadius);
|
|
|
|
// pre-calculate various values used for every point on the circle
|
|
var centreLat = this._latlng.lat * d2r;
|
|
var centreLng = this._latlng.lng * d2r;
|
|
|
|
var cosCentreLat = Math.cos(centreLat);
|
|
var sinCentreLat = Math.sin(centreLat);
|
|
|
|
var cosRadRadius = Math.cos(radRadius);
|
|
var sinRadRadius = Math.sin(radRadius);
|
|
|
|
var calcLatLngAtAngle = function(angle) {
|
|
var lat = Math.asin(sinCentreLat*cosRadRadius + cosCentreLat*sinRadRadius*Math.cos(angle));
|
|
var lng = centreLng + Math.atan2(Math.sin(angle)*sinRadRadius*cosCentreLat, cosRadRadius-sinCentreLat*Math.sin(lat));
|
|
|
|
return L.latLng(lat * r2d,lng * r2d);
|
|
}
|
|
|
|
|
|
var segments = Math.max(32,Math.floor(this._mRadius/1000));
|
|
//console.log(" (drawing circle as "+segments+" lines)");
|
|
var points = [];
|
|
for (var i=0; i<segments; i++) {
|
|
var angle = Math.PI*2/segments*i;
|
|
|
|
var point = calcLatLngAtAngle(angle)
|
|
points.push ( point );
|
|
}
|
|
|
|
return points;
|
|
},
|
|
|
|
});
|
|
|
|
|
|
L.geodesicPolyline = function (latlngs, options) {
|
|
return new L.GeodesicPolyline(latlngs, options);
|
|
};
|
|
|
|
L.geodesicPolygon = function (latlngs, options) {
|
|
return new L.GeodesicPolygon(latlngs, options);
|
|
};
|
|
|
|
/*
|
|
L.geodesicMultiPolyline = function (latlngs, options) {
|
|
return new L.GeodesicMultiPolyline(latlngs, options);
|
|
};
|
|
|
|
L.geodesicMultiPolygon = function (latlngs, options) {
|
|
return new L.GeodesicMultiPolygon(latlngs, options);
|
|
};
|
|
|
|
*/
|
|
|
|
L.geodesicCircle = function (latlng, radius, options) {
|
|
return new L.GeodesicCircle(latlng, radius, options);
|
|
}
|
|
|
|
}());
|