mirror of
https://gitlab.dit.htwk-leipzig.de/phillip.kuehne/dezibot.git
synced 2025-05-19 02:51:47 +02:00
Rename Power.* to PowerManager.* for clarity
This commit is contained in:
parent
ff11ad95b0
commit
5efa7a5efd
@ -19,7 +19,7 @@
|
||||
#include "infraredLight/InfraredLight.h"
|
||||
#include "communication/Communication.h"
|
||||
#include "display/Display.h"
|
||||
#include "power/Power.h"
|
||||
#include "power/PowerManager.h"
|
||||
|
||||
|
||||
class Dezibot {
|
||||
|
@ -1,7 +1,7 @@
|
||||
#include "ColorDetection.h"
|
||||
|
||||
void ColorDetection::begin(void) {
|
||||
if (!Power::waitForCurrentAllowance(
|
||||
if (!PowerManager::waitForCurrentAllowance(
|
||||
PowerParameters::PowerConsumers::RGBW_SENSOR,
|
||||
PowerParameters::CurrentConsumptions::CURRENT_SENSOR_RGBW,
|
||||
COLOR_DETECTION_MAX_EXECUTION_DELAY_MS, NULL)) {
|
||||
@ -100,4 +100,4 @@ float ColorDetection::modelCurrentConsumption() {
|
||||
float ColorDetection::modelChargeConsumption(uint16_t durationMs) {
|
||||
return (PowerParameters::CurrentConsumptions::CURRENT_SENSOR_RGBW *
|
||||
durationMs) / 10e6f;
|
||||
}
|
||||
}
|
||||
|
@ -11,7 +11,7 @@
|
||||
|
||||
#ifndef ColorDetection_h
|
||||
#define ColorDetection_h
|
||||
#include "../power/Power.h"
|
||||
#include "../power/PowerManager.h"
|
||||
#include <Arduino.h>
|
||||
#include <Wire.h>
|
||||
#include <stdint.h>
|
||||
|
@ -45,7 +45,7 @@ void nodeTimeAdjustedCallback(int32_t offset) {
|
||||
|
||||
void vTaskUpdate(void *pvParameters) {
|
||||
for (;;) {
|
||||
if (Power::waitForCurrentAllowance(
|
||||
if (PowerManager::waitForCurrentAllowance(
|
||||
PowerParameters::PowerConsumers::WIFI,
|
||||
PowerParameters::CurrentConsumptions::CURRENT_WIFI_PEAK +
|
||||
PowerParameters::CurrentConsumptions::CURRENT_WIFI_BASE,
|
||||
@ -54,7 +54,7 @@ void vTaskUpdate(void *pvParameters) {
|
||||
} else {
|
||||
ESP_LOGW(TAG, "Skipping mesh update after not being granted power");
|
||||
}
|
||||
Power::waitForCurrentAllowance(
|
||||
PowerManager::waitForCurrentAllowance(
|
||||
PowerParameters::PowerConsumers::WIFI,
|
||||
PowerParameters::CurrentConsumptions::CURRENT_WIFI_BASE,
|
||||
MESH_MAX_EXECUTION_DELAY_MS, NULL);
|
||||
@ -76,7 +76,7 @@ void Communication::begin(void) {
|
||||
mesh.setDebugMsgTypes(
|
||||
ERROR |
|
||||
STARTUP); // set before init() so that you can see startup messages
|
||||
if (!Power::waitForCurrentAllowance(
|
||||
if (!PowerManager::waitForCurrentAllowance(
|
||||
PowerParameters::PowerConsumers::WIFI,
|
||||
PowerParameters::CurrentConsumptions::CURRENT_WIFI_BASE,
|
||||
MESH_MAX_EXECUTION_DELAY_MS, NULL)) {
|
||||
@ -95,4 +95,4 @@ void Communication::begin(void) {
|
||||
xTaskCreate(vTaskUpdate, "vTaskMeshUpdate", 4096, &ucParameterToPass,
|
||||
tskIDLE_PRIORITY, &xHandle);
|
||||
configASSERT(xHandle);
|
||||
};
|
||||
};
|
||||
|
@ -1,7 +1,7 @@
|
||||
|
||||
#ifndef Communication_h
|
||||
#define Communication_h
|
||||
#include "../power/Power.h"
|
||||
#include "../power/PowerManager.h"
|
||||
#include <Arduino.h>
|
||||
#include <painlessMesh.h>
|
||||
#include <stdint.h>
|
||||
|
@ -4,7 +4,7 @@
|
||||
* @brief Adds the ability to print to the display of the robot.
|
||||
* @version 0.1
|
||||
* @date 2024-06-05
|
||||
*
|
||||
*
|
||||
* @copyright Copyright (c) 2024
|
||||
*/
|
||||
|
||||
@ -14,7 +14,7 @@
|
||||
|
||||
|
||||
void Display::begin(void){
|
||||
if(!Power::waitForCurrentAllowance(
|
||||
if(!PowerManager::waitForCurrentAllowance(
|
||||
PowerParameters::PowerConsumers::DISPLAY_OLED, PowerParameters::CurrentConsumptions::CURRENT_DISPLAY
|
||||
,DISPLAY_MAX_EXECUTION_DELAY_MS, NULL)){
|
||||
ESP_LOGE(TAG,"Could not get power for Display");
|
||||
@ -29,7 +29,7 @@ void Display::begin(void){
|
||||
sendDisplayCMD(stopCompleteOn);
|
||||
/*which pixels are bright: normal = 1s are bright, inverese= 0s are bright*/
|
||||
sendDisplayCMD( setNormalMode);
|
||||
|
||||
|
||||
sendDisplayCMD( setOscFreq);
|
||||
sendDisplayCMD(0x80);
|
||||
|
||||
@ -74,7 +74,7 @@ void Display::updateLine(uint charAmount)
|
||||
if(charAmount+this->charsOnCurrLine>16)
|
||||
{
|
||||
this->currLine = (this->currLine+((charAmount+this->charsOnCurrLine)/16))%8;
|
||||
this->charsOnCurrLine = (charAmount+this->charsOnCurrLine)%17; //there can be 0-16 chars on one line, so the 17th char is on next line
|
||||
this->charsOnCurrLine = (charAmount+this->charsOnCurrLine)%17; //there can be 0-16 chars on one line, so the 17th char is on next line
|
||||
}
|
||||
else
|
||||
{
|
||||
@ -85,7 +85,7 @@ void Display::updateLine(uint charAmount)
|
||||
void Display::print(char *value){
|
||||
char *nextchar;
|
||||
/* write data to the buffer */
|
||||
while(value && *value != '\0') //check if pointer is still valid and string is not terminated
|
||||
while(value && *value != '\0') //check if pointer is still valid and string is not terminated
|
||||
{
|
||||
//check if next character is a linebreak
|
||||
if(*value=='\n')
|
||||
@ -114,7 +114,7 @@ void Display::print(char *value){
|
||||
}
|
||||
Wire.endTransmission();
|
||||
}
|
||||
value++;
|
||||
value++;
|
||||
}
|
||||
};
|
||||
|
||||
@ -186,4 +186,4 @@ float modelCurrentConsumption() {
|
||||
|
||||
float modelChargeConsumptionOn(uint16_t durationMs) {
|
||||
return PowerParameters::CurrentConsumptions::CURRENT_DISPLAY * durationMs * 10e6;
|
||||
};
|
||||
};
|
||||
|
@ -11,7 +11,7 @@
|
||||
|
||||
#ifndef Display_h
|
||||
#define Display_h
|
||||
#include "../power/Power.h"
|
||||
#include "../power/PowerManager.h"
|
||||
#include "DisplayCMDs.h"
|
||||
#include <Arduino.h>
|
||||
#include <stdint.h>
|
||||
|
@ -13,7 +13,7 @@ InfraredLED::InfraredLED(uint8_t pin,ledc_timer_t timer, ledc_channel_t channel)
|
||||
};
|
||||
|
||||
void InfraredLED::begin(void){
|
||||
//we want to change frequency instead of
|
||||
//we want to change frequency instead of
|
||||
pwmTimer = ledc_timer_config_t{
|
||||
.speed_mode = pwmSpeedMode,
|
||||
.duty_resolution = DUTY_RESOLUTION,
|
||||
@ -47,7 +47,7 @@ void InfraredLED::setState(bool state){
|
||||
ledc_set_freq(pwmSpeedMode,timer,1);
|
||||
if (state) {
|
||||
if (this->ledPin == IR_BOTTOM_PIN) {
|
||||
if (!Power::waitForCurrentAllowance(
|
||||
if (!PowerManager::waitForCurrentAllowance(
|
||||
PowerParameters::PowerConsumers::LED_IR_BOTTOM,
|
||||
PowerParameters::CurrentConsumptions::CURRENT_LED_IR_BOTTOM,
|
||||
IR_LED_MAX_EXECUTION_DELAY_MS, NULL)) {
|
||||
@ -56,7 +56,7 @@ void InfraredLED::setState(bool state){
|
||||
return;
|
||||
}
|
||||
} else if (this->ledPin == IR_FRONT_PIN) {
|
||||
if (!Power::waitForCurrentAllowance(
|
||||
if (!PowerManager::waitForCurrentAllowance(
|
||||
PowerParameters::PowerConsumers::LED_IR_FRONT,
|
||||
PowerParameters::CurrentConsumptions::CURRENT_LED_IR_FRONT,
|
||||
IR_LED_MAX_EXECUTION_DELAY_MS, NULL)) {
|
||||
@ -68,14 +68,14 @@ void InfraredLED::setState(bool state){
|
||||
ledc_set_duty(pwmSpeedMode,channel,1023);
|
||||
} else {
|
||||
if (this->ledPin == IR_BOTTOM_PIN) {
|
||||
Power::releaseCurrent(PowerParameters::PowerConsumers::LED_IR_BOTTOM);
|
||||
PowerManager::releaseCurrent(PowerParameters::PowerConsumers::LED_IR_BOTTOM);
|
||||
} else {
|
||||
Power::releaseCurrent(PowerParameters::PowerConsumers::LED_IR_FRONT);
|
||||
PowerManager::releaseCurrent(PowerParameters::PowerConsumers::LED_IR_FRONT);
|
||||
}
|
||||
ledc_set_duty(pwmSpeedMode,channel,0);
|
||||
}
|
||||
ledc_update_duty(pwmSpeedMode,channel);
|
||||
|
||||
|
||||
};
|
||||
|
||||
void InfraredLED::sendFrequency(uint16_t frequency){
|
||||
@ -83,12 +83,12 @@ void InfraredLED::sendFrequency(uint16_t frequency){
|
||||
// Float to force float division without casting
|
||||
constexpr float resolution = 1 << DUTY_RESOLUTION;
|
||||
if (this->ledPin == IR_BOTTOM_PIN) {
|
||||
Power::waitForCurrentAllowance(
|
||||
PowerManager::waitForCurrentAllowance(
|
||||
PowerParameters::PowerConsumers::LED_IR_BOTTOM,
|
||||
this->modelCurrentConsumption(duty), IR_LED_MAX_EXECUTION_DELAY_MS,
|
||||
NULL);
|
||||
} else if (this->ledPin == IR_FRONT_PIN) {
|
||||
Power::waitForCurrentAllowance(
|
||||
PowerManager::waitForCurrentAllowance(
|
||||
PowerParameters::PowerConsumers::LED_IR_FRONT,
|
||||
this->modelCurrentConsumption(duty), IR_LED_MAX_EXECUTION_DELAY_MS,
|
||||
NULL);
|
||||
|
@ -10,7 +10,7 @@
|
||||
*/
|
||||
#ifndef InfraredLight_h
|
||||
#define InfraredLight_h
|
||||
#include "../power/Power.h"
|
||||
#include "../power/PowerManager.h"
|
||||
#include "driver/ledc.h"
|
||||
#include <Arduino.h>
|
||||
#include <stdint.h>
|
||||
|
@ -27,7 +27,7 @@ photoTransistors LightDetection::getBrightest(ptType type){
|
||||
photoTransistors maxSensor;
|
||||
uint16_t maxReading = 0;
|
||||
uint16_t currentReading = 0;
|
||||
|
||||
|
||||
if (type == IR){
|
||||
maxSensor = IR_FRONT;
|
||||
for(const auto pt : allIRPTs){
|
||||
@ -47,15 +47,15 @@ photoTransistors LightDetection::getBrightest(ptType type){
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
return maxSensor;
|
||||
};
|
||||
|
||||
uint32_t LightDetection::getAverageValue(photoTransistors sensor, uint32_t measurments, uint32_t timeBetween){
|
||||
|
||||
|
||||
TickType_t xLastWakeTime = xTaskGetTickCount();
|
||||
TickType_t frequency = timeBetween / portTICK_PERIOD_MS;
|
||||
uint64_t cumulatedResult = 0;
|
||||
uint64_t cumulatedResult = 0;
|
||||
for(int i = 0; i < measurments; i++){
|
||||
cumulatedResult += LightDetection::getValue(sensor);
|
||||
xTaskDelayUntil(&xLastWakeTime,frequency);
|
||||
@ -64,7 +64,7 @@ uint32_t LightDetection::getAverageValue(photoTransistors sensor, uint32_t measu
|
||||
};
|
||||
|
||||
void LightDetection::beginInfrared(void){
|
||||
if(!Power::waitForCurrentAllowance(
|
||||
if(!PowerManager::waitForCurrentAllowance(
|
||||
PowerParameters::PowerConsumers::PT_IR,
|
||||
PowerParameters::CurrentConsumptions::CURRENT_PT * 4,
|
||||
LIGHT_DETECTION_MAX_EXECUTION_DELAY_MS, NULL)) {
|
||||
@ -80,7 +80,7 @@ void LightDetection::beginInfrared(void){
|
||||
};
|
||||
|
||||
void LightDetection::beginDaylight(void){
|
||||
if(!Power::waitForCurrentAllowance(
|
||||
if(!PowerManager::waitForCurrentAllowance(
|
||||
PowerParameters::PowerConsumers::PT_DL,
|
||||
PowerParameters::CurrentConsumptions::CURRENT_PT * 2,
|
||||
LIGHT_DETECTION_MAX_EXECUTION_DELAY_MS, NULL)) {
|
||||
@ -113,7 +113,7 @@ uint16_t LightDetection::readIRPT(photoTransistors sensor){
|
||||
default:
|
||||
break;
|
||||
}
|
||||
//Power::releaseCurrent(PowerParameters::PowerConsumers::PT_IR);
|
||||
//PowerManager::releaseCurrent(PowerParameters::PowerConsumers::PT_IR);
|
||||
//digitalWrite(IR_PT_ENABLE,LOW);
|
||||
return result;
|
||||
};
|
||||
@ -132,7 +132,7 @@ uint16_t LightDetection::readDLPT(photoTransistors sensor){
|
||||
default:
|
||||
break;
|
||||
}
|
||||
Power::releaseCurrent(PowerParameters::PowerConsumers::PT_DL);
|
||||
PowerManager::releaseCurrent(PowerParameters::PowerConsumers::PT_DL);
|
||||
digitalWrite(DL_PT_ENABLE,LOW);
|
||||
return result;
|
||||
};
|
||||
@ -148,4 +148,4 @@ float LightDetection::modelCurrentConsumption(photoTransistors sensor){
|
||||
float LightDetection::modelChargeConsumptionOn(photoTransistors sensor,
|
||||
uint16_t durationMs) {
|
||||
return (LightDetection::modelCurrentConsumption(sensor) * durationMs) / 10e6f;
|
||||
}
|
||||
}
|
||||
|
@ -11,7 +11,7 @@
|
||||
|
||||
#ifndef LightDetection_h
|
||||
#define LightDetection_h
|
||||
#include "../power/Power.h"
|
||||
#include "../power/PowerManager.h"
|
||||
#include <Arduino.h>
|
||||
#include <stdint.h>
|
||||
|
||||
|
@ -17,7 +17,7 @@
|
||||
#include <freertos/task.h>
|
||||
#include "driver/ledc.h"
|
||||
#include "motionDetection/MotionDetection.h"
|
||||
#include "../power/Power.h"
|
||||
#include "../power/PowerManager.h"
|
||||
#define LEDC_MODE LEDC_LOW_SPEED_MODE
|
||||
#define TIMER LEDC_TIMER_2
|
||||
#define CHANNEL_LEFT LEDC_CHANNEL_3
|
||||
|
@ -1,5 +1,5 @@
|
||||
#include "Motion.h"
|
||||
#include "power/Power.h"
|
||||
#include "power/PowerManager.h"
|
||||
|
||||
#define MOTOR_LEFT_PIN 12
|
||||
#define MOTOR_RIGHT_PIN 11
|
||||
@ -30,7 +30,7 @@ void Motor::begin(void){
|
||||
bool Motor::setSpeed(uint16_t duty) {
|
||||
const float current = this->modelCurrentConsumption(duty);
|
||||
if (this->pin == MOTOR_LEFT_PIN) {
|
||||
if (!Power::waitForCurrentAllowance(
|
||||
if (!PowerManager::waitForCurrentAllowance(
|
||||
PowerParameters::PowerConsumers::MOTOR_LEFT, current,
|
||||
MOTOR_MAX_EXECUTION_DELAY_MS, NULL)) {
|
||||
ESP_LOGW(TAG,
|
||||
@ -40,7 +40,7 @@ bool Motor::setSpeed(uint16_t duty) {
|
||||
return false;
|
||||
}
|
||||
} else {
|
||||
if (!Power::waitForCurrentAllowance(
|
||||
if (!PowerManager::waitForCurrentAllowance(
|
||||
PowerParameters::PowerConsumers::MOTOR_RIGHT, current,
|
||||
MOTOR_MAX_EXECUTION_DELAY_MS, NULL)) {
|
||||
ESP_LOGW(TAG,
|
||||
|
@ -6,7 +6,7 @@ MotionDetection::MotionDetection(){
|
||||
};
|
||||
|
||||
void MotionDetection::begin(void){
|
||||
if (!Power::waitForCurrentAllowance(
|
||||
if (!PowerManager::waitForCurrentAllowance(
|
||||
PowerParameters::PowerConsumers::IMU,
|
||||
PowerParameters::CurrentConsumptions::CURRENT_IMU,
|
||||
IMU_MAX_EXECUTION_DELAY_MS, NULL)) {
|
||||
@ -18,7 +18,7 @@ void MotionDetection::begin(void){
|
||||
handler->begin(36,37,35,34);
|
||||
// set Accel and Gyroscop to Low Noise
|
||||
this->writeRegister(PWR_MGMT0,0x1F);
|
||||
//busy Wait for startup
|
||||
//busy Wait for startup
|
||||
delayMicroseconds(250);
|
||||
//set accelconfig
|
||||
this->writeRegister(0x21,0x05);
|
||||
@ -28,7 +28,7 @@ void MotionDetection::begin(void){
|
||||
this->writeRegister(0x23,0x37);
|
||||
//Enable Gyro and Acceldata in FIFO
|
||||
this->initFIFO();
|
||||
// TODO: Accelerometer Startup Time From sleep mode to valid data 10
|
||||
// TODO: Accelerometer Startup Time From sleep mode to valid data 10
|
||||
};
|
||||
void MotionDetection::end(void){
|
||||
this->writeRegister(PWR_MGMT0,0x00);
|
||||
@ -53,12 +53,12 @@ IMUResult MotionDetection::getRotation(){
|
||||
};
|
||||
float MotionDetection::getTemperature(){
|
||||
int16_t raw_temperatur = readRegister(REG_TEMP_HIGH)<<8;
|
||||
raw_temperatur |= readRegister(REG_TEMP_LOW);
|
||||
raw_temperatur |= readRegister(REG_TEMP_LOW);
|
||||
return raw_temperatur/128 +25;
|
||||
};
|
||||
|
||||
int8_t MotionDetection::getWhoAmI(){
|
||||
return readRegister(WHO_AM_I);
|
||||
return readRegister(WHO_AM_I);
|
||||
};
|
||||
|
||||
bool MotionDetection::isShaken(uint32_t threshold ,uint8_t axis){
|
||||
@ -122,7 +122,7 @@ Orientation MotionDetection::getTilt(){
|
||||
}
|
||||
//yAngle = -1*yAngle-90;
|
||||
}
|
||||
|
||||
|
||||
|
||||
return Orientation{xAngle,yAngle};
|
||||
|
||||
@ -175,7 +175,7 @@ uint8_t MotionDetection::readRegister(uint8_t reg){
|
||||
result = handler->transfer(cmdRead(reg));
|
||||
result = handler->transfer(0x00);
|
||||
digitalWrite(34,HIGH);
|
||||
handler->endTransaction();
|
||||
handler->endTransaction();
|
||||
return result;
|
||||
};
|
||||
|
||||
@ -207,7 +207,7 @@ void MotionDetection::writeToRegisterBank(registerBank bank, uint8_t reg, uint8_
|
||||
}
|
||||
uint8_t result = this->readRegister(PWR_MGMT0);
|
||||
Serial.print("MADDR_W: ");
|
||||
Serial.println(readRegister(MADDR_W));
|
||||
Serial.println(readRegister(MADDR_W));
|
||||
//set Idle Bit
|
||||
this->writeRegister(PWR_MGMT0,result|0x10);
|
||||
switch(bank){
|
||||
@ -254,7 +254,7 @@ void MotionDetection::initFIFO(){
|
||||
uint MotionDetection::getDataFromFIFO(FIFO_Package* buffer){
|
||||
int16_t fifocount = 0;
|
||||
int8_t fifohigh = this->readRegister(FIFO_COUNTH);
|
||||
int8_t fifolow = this->readRegister(FIFO_COUNTL);
|
||||
int8_t fifolow = this->readRegister(FIFO_COUNTL);
|
||||
fifocount = (fifohigh<<8)|fifolow;
|
||||
//fifocount |= this->readRegister(FIFO_COUNTL);
|
||||
//fifocount = (this->readRegister(FIFO_COUNTH)<<8);
|
||||
@ -267,20 +267,20 @@ uint MotionDetection::getDataFromFIFO(FIFO_Package* buffer){
|
||||
handler->transfer(buf,16*fifocount);
|
||||
digitalWrite(34,HIGH);
|
||||
handler->endTransaction();
|
||||
|
||||
|
||||
writeRegister(0x02,0x04);
|
||||
delayMicroseconds(10);
|
||||
|
||||
for(int i = 0; i<fifocount;i++){
|
||||
buffer[i].header = buf[0x00+16*i];
|
||||
buffer[i].accel.x = (buf[0x02+16*i]<<8)|buf[0x01+16*i];
|
||||
buffer[i].accel.y = (buf[0x04+16*i]<<8)|buf[0x03+16*i];
|
||||
buffer[i].accel.z = (buf[0x06+16*i]<<8)|buf[0x05+16*i];
|
||||
buffer[i].gyro.x = (buf[0x08+16*i]<<8)|buf[0x07+16*i];
|
||||
buffer[i].gyro.y = (buf[0x0A+16*i]<<8)|buf[0x09+16*i];
|
||||
buffer[i].gyro.z = (buf[0x0C+16*i]<<8)|buf[0x0B+16*i];
|
||||
buffer[i].temperature = buf[0x0D+16*i];
|
||||
buffer[i].timestamp = (buf[0x0F+16*i]<<8)|buf[0x0E +16*i];
|
||||
buffer[i].accel.x = (buf[0x02+16*i]<<8)|buf[0x01+16*i];
|
||||
buffer[i].accel.y = (buf[0x04+16*i]<<8)|buf[0x03+16*i];
|
||||
buffer[i].accel.z = (buf[0x06+16*i]<<8)|buf[0x05+16*i];
|
||||
buffer[i].gyro.x = (buf[0x08+16*i]<<8)|buf[0x07+16*i];
|
||||
buffer[i].gyro.y = (buf[0x0A+16*i]<<8)|buf[0x09+16*i];
|
||||
buffer[i].gyro.z = (buf[0x0C+16*i]<<8)|buf[0x0B+16*i];
|
||||
buffer[i].temperature = buf[0x0D+16*i];
|
||||
buffer[i].timestamp = (buf[0x0F+16*i]<<8)|buf[0x0E +16*i];
|
||||
}
|
||||
return fifocount;
|
||||
};
|
||||
@ -301,4 +301,4 @@ float MotionDetection::modelCurrentConsumption(){
|
||||
|
||||
float MotionDetection::modelChargeConsumption(uint16_t durationMs) {
|
||||
return (this->modelCurrentConsumption() * durationMs) / 10e6f;
|
||||
}
|
||||
}
|
||||
|
@ -10,7 +10,7 @@
|
||||
*/
|
||||
#ifndef MotionDetection_h
|
||||
#define MotionDetection_h
|
||||
#include "../power/Power.h"
|
||||
#include "../power/PowerManager.h"
|
||||
#include "IMU_CMDs.h"
|
||||
#include <Arduino.h>
|
||||
#include <SPI.h>
|
||||
|
@ -6,15 +6,15 @@ MultiColorLight::MultiColorLight()
|
||||
};
|
||||
|
||||
void MultiColorLight::begin(void) {
|
||||
if (!Power::waitForCurrentAllowance(
|
||||
if (!PowerManager::waitForCurrentAllowance(
|
||||
PowerParameters::PowerConsumers::LED_RGB_TOP_LEFT,
|
||||
PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_BASE,
|
||||
MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS, NULL) &&
|
||||
Power::waitForCurrentAllowance(
|
||||
PowerManager::waitForCurrentAllowance(
|
||||
PowerParameters::PowerConsumers::LED_RGB_TOP_RIGHT,
|
||||
PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_BASE,
|
||||
MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS, NULL) &&
|
||||
Power::waitForCurrentAllowance(
|
||||
PowerManager::waitForCurrentAllowance(
|
||||
PowerParameters::PowerConsumers::LED_RGB_BOTTOM,
|
||||
PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_BASE,
|
||||
MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS, NULL)) {
|
||||
@ -33,7 +33,7 @@ void MultiColorLight::setLed(uint8_t index, uint32_t color) {
|
||||
float totalConsumption = modelCurrentConsumption(normalizedColor);
|
||||
switch (index) {
|
||||
case 0:
|
||||
if (!Power::waitForCurrentAllowance(
|
||||
if (!PowerManager::waitForCurrentAllowance(
|
||||
PowerParameters::PowerConsumers::LED_RGB_TOP_RIGHT,
|
||||
totalConsumption, MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS, NULL)) {
|
||||
ESP_LOGW(TAG,
|
||||
@ -44,7 +44,7 @@ void MultiColorLight::setLed(uint8_t index, uint32_t color) {
|
||||
}
|
||||
break;
|
||||
case 1:
|
||||
if (!Power::waitForCurrentAllowance(
|
||||
if (!PowerManager::waitForCurrentAllowance(
|
||||
PowerParameters::PowerConsumers::LED_RGB_TOP_LEFT, totalConsumption,
|
||||
MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS, NULL)) {
|
||||
ESP_LOGW(TAG,
|
||||
@ -55,7 +55,7 @@ void MultiColorLight::setLed(uint8_t index, uint32_t color) {
|
||||
}
|
||||
break;
|
||||
case 2:
|
||||
if (!Power::waitForCurrentAllowance(
|
||||
if (!PowerManager::waitForCurrentAllowance(
|
||||
PowerParameters::PowerConsumers::LED_RGB_BOTTOM, totalConsumption,
|
||||
MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS, NULL)) {
|
||||
ESP_LOGW(TAG,
|
||||
@ -235,7 +235,7 @@ float MultiColorLight::modelChargeConsumption(leds leds, uint32_t color,
|
||||
// TODO logging
|
||||
break;
|
||||
}
|
||||
return ledsConsumption;
|
||||
return ledsConsumption;
|
||||
};
|
||||
|
||||
float MultiColorLight::modelChargeConsumption(leds leds, uint8_t red,
|
||||
@ -243,4 +243,4 @@ float MultiColorLight::modelChargeConsumption(leds leds, uint8_t red,
|
||||
uint16_t durationMs) {
|
||||
return MultiColorLight::modelChargeConsumption(
|
||||
leds, MultiColorLight::color(red, green, blue), durationMs);
|
||||
};
|
||||
};
|
||||
|
@ -11,7 +11,7 @@
|
||||
*/
|
||||
#ifndef MultiColorLight_h
|
||||
#define MultiColorLight_h
|
||||
#include "../power/Power.h"
|
||||
#include "../power/PowerManager.h"
|
||||
#include "ColorConstants.h"
|
||||
#include <Adafruit_NeoPixel.h>
|
||||
|
||||
|
@ -1,5 +1,5 @@
|
||||
/**
|
||||
* @file Power.h
|
||||
* @file PowerManager.h
|
||||
* @author Phillip Kühne
|
||||
* @brief This component provides utilities for keeping track of power usage
|
||||
* consumption.
|
||||
@ -7,19 +7,19 @@
|
||||
* @date 2024-11-23
|
||||
*/
|
||||
|
||||
#include "Power.h"
|
||||
#include "PowerManager.h"
|
||||
|
||||
SemaphoreHandle_t Power::powerMutex = NULL;
|
||||
SemaphoreHandle_t PowerManager::powerMutex = NULL;
|
||||
|
||||
void vTaskUpdatePowerState(void *pvParameters) {
|
||||
for (;;) {
|
||||
ESP_LOGV(TAG, "Updating Power State...");
|
||||
Power::updatePowerStateHandler();
|
||||
PowerManager::updatePowerStateHandler();
|
||||
vTaskDelay(pdMS_TO_TICKS(10));
|
||||
}
|
||||
}
|
||||
|
||||
void Power::begin() {
|
||||
void PowerManager::begin() {
|
||||
// Check if another instance of us already initialized the power scheduler,
|
||||
// if not, we will do it.
|
||||
ESP_LOGI(TAG, "Initializing Power Management");
|
||||
@ -38,8 +38,8 @@ void Power::begin() {
|
||||
powerScheduler = &PowerScheduler::getPowerScheduler(
|
||||
PowerParameters::Battery::CELL_CURRENT_1C_MA,
|
||||
PowerParameters::Battery::CELL_CURRENT_2C_MA);
|
||||
Power::initPowerState();
|
||||
Power::recalculateCurrentBudgets();
|
||||
PowerManager::initPowerState();
|
||||
PowerManager::recalculateCurrentBudgets();
|
||||
TaskHandle_t xHandle = NULL;
|
||||
xTaskCreate(vTaskUpdatePowerState, "vTaskPowerStateUpdate", 4096, NULL,
|
||||
tskIDLE_PRIORITY, &xHandle);
|
||||
@ -54,26 +54,26 @@ void Power::begin() {
|
||||
}
|
||||
}
|
||||
|
||||
float Power::getFreeLimitCurrentBudget() {
|
||||
float PowerManager::getFreeLimitCurrentBudget() {
|
||||
return powerScheduler->getFreeLimitCurrentBudget();
|
||||
}
|
||||
|
||||
float Power::getFreeMaximumCurrentBudget() {
|
||||
float PowerManager::getFreeMaximumCurrentBudget() {
|
||||
return powerScheduler->getFreeMaximumCurrentBudget();
|
||||
}
|
||||
|
||||
bool Power::tryAccquireCurrentAllowance(
|
||||
bool PowerManager::tryAccquireCurrentAllowance(
|
||||
PowerParameters::PowerConsumers consumer, uint16_t neededCurrent,
|
||||
uint16_t requestedDurationMs) {
|
||||
return powerScheduler->tryAccquireCurrentAllowance(consumer, neededCurrent,
|
||||
requestedDurationMs);
|
||||
}
|
||||
|
||||
void Power::releaseCurrent(PowerParameters::PowerConsumers consumer) {
|
||||
void PowerManager::releaseCurrent(PowerParameters::PowerConsumers consumer) {
|
||||
powerScheduler->releaseCurrent(consumer);
|
||||
}
|
||||
|
||||
bool Power::waitForCurrentAllowance(PowerParameters::PowerConsumers consumer,
|
||||
bool PowerManager::waitForCurrentAllowance(PowerParameters::PowerConsumers consumer,
|
||||
uint16_t neededCurrent,
|
||||
uint16_t maxSlackTimeMs,
|
||||
uint16_t requestedDurationMs) {
|
||||
@ -81,15 +81,15 @@ bool Power::waitForCurrentAllowance(PowerParameters::PowerConsumers consumer,
|
||||
consumer, neededCurrent, maxSlackTimeMs, requestedDurationMs);
|
||||
}
|
||||
|
||||
void Power::beginPermanentDeepSleep(void) {
|
||||
void PowerManager::beginPermanentDeepSleep(void) {
|
||||
return powerScheduler->beginPermanentDeepSleep();
|
||||
}
|
||||
|
||||
float Power::getCurrentCurrent(void) {
|
||||
float PowerManager::getCurrentCurrent(void) {
|
||||
return powerScheduler->getCurrentCurrent();
|
||||
}
|
||||
|
||||
float Power::getBatteryCurrent(void) {
|
||||
float PowerManager::getBatteryCurrent(void) {
|
||||
const float i_3v3 = getCurrentCurrent();
|
||||
const float u_3v3 = 3.3;
|
||||
const float u_bat = getBatteryVoltage();
|
||||
@ -97,15 +97,15 @@ float Power::getBatteryCurrent(void) {
|
||||
return (u_3v3 * i_3v3) / (u_bat * eta);
|
||||
}
|
||||
|
||||
void Power::recalculateCurrentBudgets(void) {
|
||||
void PowerManager::recalculateCurrentBudgets(void) {
|
||||
return powerScheduler->recalculateCurrentBudgets();
|
||||
}
|
||||
|
||||
float Power::getConsumerCurrent(PowerParameters::PowerConsumers consumer) {
|
||||
float PowerManager::getConsumerCurrent(PowerParameters::PowerConsumers consumer) {
|
||||
return powerScheduler->getConsumerCurrent(consumer);
|
||||
}
|
||||
|
||||
float Power::getBatteryVoltage() {
|
||||
float PowerManager::getBatteryVoltage() {
|
||||
// Get the battery voltage from the ADC and convert it to a voltage
|
||||
// using the voltage divider.
|
||||
pinMode(PowerParameters::PinConfig::BAT_ADC_EN, OUTPUT);
|
||||
@ -127,14 +127,14 @@ float Power::getBatteryVoltage() {
|
||||
return batteryVoltage;
|
||||
}
|
||||
|
||||
float Power::getBatteryChargePercent() { return percentRemaining; }
|
||||
float PowerManager::getBatteryChargePercent() { return percentRemaining; }
|
||||
|
||||
float Power::getBatteryChargeCoulombs() { return coloumbsRemaining; }
|
||||
float PowerManager::getBatteryChargeCoulombs() { return coloumbsRemaining; }
|
||||
|
||||
float Power::getBatteryVoltageChargePercent() {
|
||||
float PowerManager::getBatteryVoltageChargePercent() {
|
||||
// Directly get the battery voltage, correct the curve with an offset and
|
||||
// calculate the charge state based on the discharge curve.
|
||||
float batteryVoltage = getBatteryVoltage() + Power::fullVoltageOffset;
|
||||
float batteryVoltage = getBatteryVoltage() + PowerManager::fullVoltageOffset;
|
||||
float chargeState = 0;
|
||||
// Clamp edge cases
|
||||
if (batteryVoltage >=
|
||||
@ -163,16 +163,16 @@ float Power::getBatteryVoltageChargePercent() {
|
||||
}
|
||||
}
|
||||
|
||||
void Power::updatePowerStateHandler() {
|
||||
void PowerManager::updatePowerStateHandler() {
|
||||
|
||||
// Update supply and charge state flags
|
||||
Power::busPowered = !digitalRead(PowerParameters::PinConfig::VUSB_SENS);
|
||||
Power::chargingState = digitalRead(PowerParameters::PinConfig::BAT_CHG_STAT);
|
||||
PowerManager::busPowered = !digitalRead(PowerParameters::PinConfig::VUSB_SENS);
|
||||
PowerManager::chargingState = digitalRead(PowerParameters::PinConfig::BAT_CHG_STAT);
|
||||
|
||||
// If the battery is charging and fully charged
|
||||
if (Power::busPowered && !Power::chargingState) {
|
||||
if (PowerManager::busPowered && !PowerManager::chargingState) {
|
||||
// Calibrate voltage offset on full Battery
|
||||
Power::fullVoltageOffset = PowerParameters::Battery::DISCHARGE_CURVE::VOLTAGES[0] - getBatteryVoltage();
|
||||
PowerManager::fullVoltageOffset = PowerParameters::Battery::DISCHARGE_CURVE::VOLTAGES[0] - getBatteryVoltage();
|
||||
}
|
||||
|
||||
ESP_LOGD(TAG, "Bus Powered: %d, Charging: %d", busPowered, chargingState);
|
||||
@ -184,7 +184,7 @@ void Power::updatePowerStateHandler() {
|
||||
float coloumbsConsumedSinceLastUpdate;
|
||||
|
||||
// Calculate remaining battery charge in Coulombs based on current and time
|
||||
if (!Power::busPowered) {
|
||||
if (!PowerManager::busPowered) {
|
||||
coloumbsConsumedSinceLastUpdate =
|
||||
(currentCurrent / 1000) *
|
||||
((pdTICKS_TO_MS(xTaskGetTickCount() - lastPowerStateUpdate)) / 1000.0);
|
||||
@ -196,7 +196,7 @@ void Power::updatePowerStateHandler() {
|
||||
|
||||
// If current flow is close enough to reference, get battery charge state via
|
||||
// voltage curve
|
||||
if (!Power::busPowered) {
|
||||
if (!PowerManager::busPowered) {
|
||||
if ((currentCurrent > (referenceCurrentMa * 0.6)) &&
|
||||
(currentCurrent < (referenceCurrentMa * 1.4))) {
|
||||
// Get battery charge state from voltage curve
|
||||
@ -233,21 +233,21 @@ void Power::updatePowerStateHandler() {
|
||||
for (int i = 0; i < PowerParameters::Battery::AVERAGING_SAMPLES; i++) {
|
||||
sampleSum += lastSOC[i];
|
||||
}
|
||||
Power::percentRemaining =
|
||||
PowerManager::percentRemaining =
|
||||
sampleSum / PowerParameters::Battery::AVERAGING_SAMPLES;
|
||||
|
||||
// Update last update time
|
||||
Power::lastPowerStateUpdate = xTaskGetTickCount();
|
||||
PowerManager::lastPowerStateUpdate = xTaskGetTickCount();
|
||||
|
||||
// Update the available current (changes based on battery state of charge)
|
||||
Power::powerScheduler->recalculateCurrentBudgets();
|
||||
PowerManager::powerScheduler->recalculateCurrentBudgets();
|
||||
ESP_LOGD(TAG, "Current: %f mA, Charge: %f Coulombs, %f %%", currentCurrent,
|
||||
coloumbsRemaining, percentRemaining);
|
||||
|
||||
return;
|
||||
}
|
||||
|
||||
float Power::getMax3V3Current() {
|
||||
float PowerManager::getMax3V3Current() {
|
||||
// Conversion from Thesis
|
||||
float u_bat = getBatteryVoltage();
|
||||
float i_bat = PowerParameters::Battery::CELL_CURRENT_1C_MA;
|
||||
@ -256,7 +256,7 @@ float Power::getMax3V3Current() {
|
||||
return (u_bat * i_bat * eta) / u_3v3;
|
||||
}
|
||||
|
||||
void Power::addSoCSample(float soc) {
|
||||
void PowerManager::addSoCSample(float soc) {
|
||||
PowerMutex lock(powerMutex);
|
||||
if (!lock.isLocked()) {
|
||||
ESP_LOGE(TAG, "Could not take power to add SoC sample");
|
||||
@ -267,7 +267,7 @@ void Power::addSoCSample(float soc) {
|
||||
lastSOC[latestSoCIndex] = soc;
|
||||
}
|
||||
|
||||
void Power::initPowerState(void) {
|
||||
void PowerManager::initPowerState(void) {
|
||||
// Initialize the power state
|
||||
lastPowerStateUpdate = xTaskGetTickCount();
|
||||
// TODO: Get initial battery charge state based on voltage, set coloumbs based
|
||||
@ -288,88 +288,88 @@ void Power::initPowerState(void) {
|
||||
chargingState = digitalRead(PowerParameters::PinConfig::BAT_CHG_STAT);
|
||||
}
|
||||
|
||||
void Power::dumpPowerStatistics() {
|
||||
void PowerManager::dumpPowerStatistics() {
|
||||
Serial.printf("======== Dezibot Power Statistics ========\r\n");
|
||||
Serial.printf("Current: %f mA\r\n", Power::getCurrentCurrent());
|
||||
Serial.printf("Battery Voltage: %f V\r\n", Power::getBatteryVoltage());
|
||||
Serial.printf("Battery Charge: %f %%\r\n", Power::getBatteryChargePercent());
|
||||
Serial.printf("Current: %f mA\r\n", PowerManager::getCurrentCurrent());
|
||||
Serial.printf("Battery Voltage: %f V\r\n", PowerManager::getBatteryVoltage());
|
||||
Serial.printf("Battery Charge: %f %%\r\n", PowerManager::getBatteryChargePercent());
|
||||
Serial.printf("Battery Charge: %f Coulombs\r\n",
|
||||
Power::getBatteryChargeCoulombs());
|
||||
PowerManager::getBatteryChargeCoulombs());
|
||||
Serial.printf("Max 3.3V Current in this state (1C, 2C): %f mA, %f mA \r\n",
|
||||
Power::getMax3V3Current(), Power::getMax3V3Current() * 2);
|
||||
PowerManager::getMax3V3Current(), PowerManager::getMax3V3Current() * 2);
|
||||
Serial.printf("=========================================\r\n");
|
||||
}
|
||||
|
||||
void Power::dumpConsumerStatistics() {
|
||||
void PowerManager::dumpConsumerStatistics() {
|
||||
Serial.printf("======== Dezibot Consumer Statistics ========\r\n");
|
||||
Serial.printf("ESP: %f mA\r\n", Power::getConsumerCurrent(
|
||||
Serial.printf("ESP: %f mA\r\n", PowerManager::getConsumerCurrent(
|
||||
PowerParameters::PowerConsumers::ESP));
|
||||
Serial.printf("WIFI: %f mA\r\n", Power::getConsumerCurrent(
|
||||
Serial.printf("WIFI: %f mA\r\n", PowerManager::getConsumerCurrent(
|
||||
PowerParameters::PowerConsumers::WIFI));
|
||||
Serial.printf("LED_RGB_TOP_LEFT: %f mA\r\n",
|
||||
Power::getConsumerCurrent(
|
||||
PowerManager::getConsumerCurrent(
|
||||
PowerParameters::PowerConsumers::LED_RGB_TOP_LEFT));
|
||||
Serial.printf("LED_RGB_TOP_RIGHT: %f mA\r\n",
|
||||
Power::getConsumerCurrent(
|
||||
PowerManager::getConsumerCurrent(
|
||||
PowerParameters::PowerConsumers::LED_RGB_TOP_RIGHT));
|
||||
Serial.printf("LED_RGB_BOTTOM: %f mA\r\n",
|
||||
Power::getConsumerCurrent(
|
||||
PowerManager::getConsumerCurrent(
|
||||
PowerParameters::PowerConsumers::LED_RGB_BOTTOM));
|
||||
Serial.printf(
|
||||
"RGBW_SENSOR: %f mA\r\n",
|
||||
Power::getConsumerCurrent(PowerParameters::PowerConsumers::RGBW_SENSOR));
|
||||
PowerManager::getConsumerCurrent(PowerParameters::PowerConsumers::RGBW_SENSOR));
|
||||
Serial.printf("LED_IR_BOTTOM: %f mA\r\n",
|
||||
Power::getConsumerCurrent(
|
||||
PowerManager::getConsumerCurrent(
|
||||
PowerParameters::PowerConsumers::LED_IR_BOTTOM));
|
||||
Serial.printf(
|
||||
"LED_IR_FRONT: %f mA\r\n",
|
||||
Power::getConsumerCurrent(PowerParameters::PowerConsumers::LED_IR_FRONT));
|
||||
PowerManager::getConsumerCurrent(PowerParameters::PowerConsumers::LED_IR_FRONT));
|
||||
Serial.printf(
|
||||
"PT_IR: %f mA\r\n",
|
||||
Power::getConsumerCurrent(PowerParameters::PowerConsumers::PT_IR));
|
||||
PowerManager::getConsumerCurrent(PowerParameters::PowerConsumers::PT_IR));
|
||||
Serial.printf(
|
||||
"PT_DL: %f mA\r\n",
|
||||
Power::getConsumerCurrent(PowerParameters::PowerConsumers::PT_DL));
|
||||
PowerManager::getConsumerCurrent(PowerParameters::PowerConsumers::PT_DL));
|
||||
Serial.printf(
|
||||
"LED_UV: %f mA\r\n",
|
||||
Power::getConsumerCurrent(PowerParameters::PowerConsumers::LED_UV));
|
||||
PowerManager::getConsumerCurrent(PowerParameters::PowerConsumers::LED_UV));
|
||||
Serial.printf(
|
||||
"DISPLAY_OLED: %f mA\r\n",
|
||||
Power::getConsumerCurrent(PowerParameters::PowerConsumers::DISPLAY_OLED));
|
||||
PowerManager::getConsumerCurrent(PowerParameters::PowerConsumers::DISPLAY_OLED));
|
||||
Serial.printf(
|
||||
"MOTOR_LEFT: %f mA\r\n",
|
||||
Power::getConsumerCurrent(PowerParameters::PowerConsumers::MOTOR_LEFT));
|
||||
PowerManager::getConsumerCurrent(PowerParameters::PowerConsumers::MOTOR_LEFT));
|
||||
Serial.printf(
|
||||
"MOTOR_RIGHT: %f mA\r\n",
|
||||
Power::getConsumerCurrent(PowerParameters::PowerConsumers::MOTOR_RIGHT));
|
||||
Serial.printf("IMU: %f mA\r\n", Power::getConsumerCurrent(
|
||||
PowerManager::getConsumerCurrent(PowerParameters::PowerConsumers::MOTOR_RIGHT));
|
||||
Serial.printf("IMU: %f mA\r\n", PowerManager::getConsumerCurrent(
|
||||
PowerParameters::PowerConsumers::IMU));
|
||||
Serial.printf("=============================================\r\n");
|
||||
}
|
||||
|
||||
bool Power::isUSBPowered() { return busPowered; }
|
||||
bool PowerManager::isUSBPowered() { return busPowered; }
|
||||
|
||||
bool Power::isBatteryPowered() { return !busPowered; }
|
||||
bool PowerManager::isBatteryPowered() { return !busPowered; }
|
||||
|
||||
bool Power::isBatteryCharging() { return chargingState && busPowered; }
|
||||
bool PowerManager::isBatteryCharging() { return chargingState && busPowered; }
|
||||
|
||||
bool Power::isBatteryDischarging() { return !chargingState && !busPowered; }
|
||||
bool PowerManager::isBatteryDischarging() { return !chargingState && !busPowered; }
|
||||
|
||||
bool Power::isBatteryFullyCharged() { return !chargingState && busPowered; }
|
||||
int Power::latestSoCIndex = 0;
|
||||
float Power::lastSOC[PowerParameters::Battery::AVERAGING_SAMPLES] = {0};
|
||||
TickType_t Power::lastPowerStateUpdate = 0;
|
||||
float Power::coloumbsRemaining =
|
||||
bool PowerManager::isBatteryFullyCharged() { return !chargingState && busPowered; }
|
||||
int PowerManager::latestSoCIndex = 0;
|
||||
float PowerManager::lastSOC[PowerParameters::Battery::AVERAGING_SAMPLES] = {0};
|
||||
TickType_t PowerManager::lastPowerStateUpdate = 0;
|
||||
float PowerManager::coloumbsRemaining =
|
||||
PowerParameters::Battery::CELL_CHARGE_FULL_COLOUMB;
|
||||
float Power::percentRemaining = 100.0;
|
||||
PowerScheduler *Power::powerScheduler = nullptr;
|
||||
float PowerManager::percentRemaining = 100.0;
|
||||
PowerScheduler *PowerManager::powerScheduler = nullptr;
|
||||
|
||||
bool Power::busPowered = false;
|
||||
bool PowerManager::busPowered = false;
|
||||
|
||||
bool Power::chargingState = false;
|
||||
bool PowerManager::chargingState = false;
|
||||
|
||||
float Power::fullVoltageOffset = 0;
|
||||
float PowerManager::fullVoltageOffset = 0;
|
||||
|
||||
Power::Power() {}
|
||||
PowerManager::PowerManager() {}
|
||||
|
||||
Power::~Power() {}
|
||||
PowerManager::~PowerManager() {}
|
@ -1,5 +1,5 @@
|
||||
/**
|
||||
* @file Power.h
|
||||
* @file PowerManager.h
|
||||
* @author Phillip Kühne
|
||||
* @brief This component provides utilities for keeping track of power usage
|
||||
* consumption.
|
||||
@ -21,7 +21,7 @@
|
||||
|
||||
enum TaskResumptionReason { POWER_AVAILABLE, TIMEOUT };
|
||||
|
||||
class Power {
|
||||
class PowerManager {
|
||||
|
||||
private:
|
||||
static SemaphoreHandle_t powerMutex;
|
||||
@ -86,8 +86,8 @@ protected:
|
||||
|
||||
public:
|
||||
static void begin(void);
|
||||
Power();
|
||||
~Power();
|
||||
PowerManager();
|
||||
~PowerManager();
|
||||
/// @brief Get the current free current budget (to C1 discharge)
|
||||
/// @return the amount of power that is currently available (in mA)
|
||||
static float getFreeLimitCurrentBudget(void);
|
||||
@ -193,6 +193,6 @@ public:
|
||||
|
||||
};
|
||||
|
||||
extern Power power;
|
||||
extern PowerManager power;
|
||||
|
||||
#endif // Power
|
||||
#endif // Power
|
@ -11,7 +11,7 @@
|
||||
*/
|
||||
|
||||
#include "PowerScheduler.h"
|
||||
#include "Power.h"
|
||||
#include "PowerManager.h"
|
||||
|
||||
bool PowerScheduler::tryAccquireCurrentAllowance(
|
||||
PowerParameters::PowerConsumers consumer, float neededCurrent,
|
||||
@ -192,9 +192,9 @@ void PowerScheduler::recalculateCurrentBudgets(void) {
|
||||
|
||||
// Get the respective maximums and subtract currently flowing currents
|
||||
ESP_LOGI(TAG, "Recalculating current budgets...");
|
||||
float tempFreeLimitCurrentBudget = Power::getMax3V3Current();
|
||||
float tempFreeLimitCurrentBudget = PowerManager::getMax3V3Current();
|
||||
ESP_LOGI(TAG, "Got max 3V3 current: %.2f", tempFreeLimitCurrentBudget);
|
||||
float tempFreeMaximumCurrentBudget = Power::getMax3V3Current() * 2;
|
||||
float tempFreeMaximumCurrentBudget = PowerManager::getMax3V3Current() * 2;
|
||||
PowerSchedulerMutex lock(powerSchedulerMutex);
|
||||
if (lock.isLocked() == false) {
|
||||
return;
|
||||
@ -315,4 +315,4 @@ PowerScheduler::~PowerScheduler() {
|
||||
if (powerSchedulerMutex != NULL) {
|
||||
vSemaphoreDelete(powerSchedulerMutex);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
Loading…
x
Reference in New Issue
Block a user