dezibot/src/multiColorLight/MultiColorLight.cpp

245 lines
7.6 KiB
C++

#include "MultiColorLight.h"
MultiColorLight::MultiColorLight()
: rgbLeds(ledAmount, ledPin) {
};
void MultiColorLight::begin(void) {
if (!Power::waitForCurrentAllowance(
PowerParameters::PowerConsumers::LED_RGB_TOP_LEFT,
PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_BASE,
MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS, NULL) &&
Power::waitForCurrentAllowance(
PowerParameters::PowerConsumers::LED_RGB_TOP_RIGHT,
PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_BASE,
MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS, NULL) &&
Power::waitForCurrentAllowance(
PowerParameters::PowerConsumers::LED_RGB_BOTTOM,
PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_BASE,
MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS, NULL)) {
ESP_LOGE(TAG, "Could not get power for MultiColorLight");
Serial.println("Could not get power for MultiColorLight");
}
rgbLeds.begin();
this->turnOffLed();
};
void MultiColorLight::setLed(uint8_t index, uint32_t color) {
if (index > ledAmount - 1) {
// TODO: logging
}
uint32_t normalizedColor = normalizeColor(color);
float totalConsumption = modelCurrentConsumption(normalizedColor);
switch (index) {
case 0:
if (!Power::waitForCurrentAllowance(
PowerParameters::PowerConsumers::LED_RGB_TOP_RIGHT,
totalConsumption, MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS, NULL)) {
ESP_LOGW(TAG,
"Power to set LED RGB TOP RIGHT to color 0x%.8X not granted in "
"time. Skipping.",
normalizedColor);
return;
}
break;
case 1:
if (!Power::waitForCurrentAllowance(
PowerParameters::PowerConsumers::LED_RGB_TOP_LEFT, totalConsumption,
MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS, NULL)) {
ESP_LOGW(TAG,
"Power to set LED RGB TOP LEFT to color 0x%.8X not granted in "
"time. Skipping.",
normalizedColor);
return;
}
break;
case 2:
if (!Power::waitForCurrentAllowance(
PowerParameters::PowerConsumers::LED_RGB_BOTTOM, totalConsumption,
MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS, NULL)) {
ESP_LOGW(TAG,
"Power to set LED RGB BOTTOM to color 0x%.8X not granted in "
"time. Skipping.",
normalizedColor);
return;
}
break;
}
rgbLeds.setPixelColor(index, normalizedColor);
rgbLeds.show();
};
void MultiColorLight::setLed(leds leds, uint32_t color) {
switch (leds) {
case TOP_LEFT:
MultiColorLight::setLed(1, color);
break;
case TOP_RIGHT:
MultiColorLight::setLed(0, color);
break;
case BOTTOM:
MultiColorLight::setLed(2, color);
break;
case TOP:
for (int index = 0; index < 2; index++) {
MultiColorLight::setLed(index, color);
}
break;
case ALL:
for (int index = 0; index < ledAmount; index++) {
MultiColorLight::setLed(index, color);
}
break;
default:
// TODO logging
break;
}
};
void MultiColorLight::setLed(leds leds, uint8_t red, uint8_t green,
uint8_t blue) {
MultiColorLight::setLed(leds, MultiColorLight::color(red, green, blue));
};
void MultiColorLight::setTopLeds(uint32_t color) {
MultiColorLight::setLed(TOP, color);
};
void MultiColorLight::setTopLeds(uint8_t red, uint8_t green, uint8_t blue) {
MultiColorLight::setTopLeds(MultiColorLight::color(red, green, blue));
};
void MultiColorLight::blink(uint16_t amount, uint32_t color, leds leds,
uint32_t interval) {
for (uint16_t index = 0; index < amount; index++) {
MultiColorLight::setLed(leds, color);
vTaskDelay(interval);
MultiColorLight::turnOffLed(leds);
vTaskDelay(interval);
}
};
void MultiColorLight::turnOffLed(leds leds) {
switch (leds) {
case TOP_LEFT:
MultiColorLight::setLed(1, 0);
break;
case TOP_RIGHT:
MultiColorLight::setLed(0, 0);
break;
case BOTTOM:
MultiColorLight::setLed(2, 0);
break;
case TOP:
for (int index = 0; index < 2; index++) {
MultiColorLight::setLed(index, 0);
}
break;
case ALL:
for (int index = 0; index < 3; index++) {
MultiColorLight::setLed(index, 0);
}
break;
default:
// TODO logging
break;
}
};
uint32_t MultiColorLight::color(uint8_t r, uint8_t g, uint8_t b) {
return rgbLeds.Color(r, g, b);
};
// PRIVATE
uint32_t MultiColorLight::normalizeColor(uint32_t color,
uint8_t maxBrightness) {
uint8_t red = (color & 0x00FF0000) >> 16;
uint8_t green = (color & 0x0000FF00) >> 8;
uint8_t blue = (color & 0x000000FF);
if (red > maxBrightness) {
red = maxBrightness;
}
if (green > maxBrightness - 70) {
green = maxBrightness - 70;
}
if (blue > maxBrightness - 50) {
blue = maxBrightness - 50;
}
return MultiColorLight::color(red, green, blue);
};
float MultiColorLight::modelCurrentConsumption(uint32_t color) {
uint32_t normalizedColor = normalizeColor(color);
uint16_t colorComponentRed = (normalizedColor & 0x00FF0000) >> 16;
uint16_t colorComponentGreen = (normalizedColor & 0x0000FF00) >> 8;
uint16_t colorComponentBlue = (normalizedColor & 0x000000FF);
float redChannelConsumption =
(colorComponentRed / 255.0) *
PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_CHAN_T_ON;
float greenChannelConsumption =
(colorComponentGreen / 255.0) *
PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_CHAN_T_ON;
float blueChannelConsumption =
(colorComponentBlue / 255.0) *
PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_CHAN_T_ON;
return redChannelConsumption + greenChannelConsumption +
blueChannelConsumption +
PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_BASE;
};
float MultiColorLight::modelCurrentConsumption(uint8_t red, uint8_t green,
uint8_t blue) {
return modelCurrentConsumption(MultiColorLight::color(red, green, blue));
};
float MultiColorLight::modelChargeConsumption(uint8_t index, uint32_t color,
uint16_t durationMs) {
if (index > ledAmount - 1) {
// TODO: logging
}
uint32_t normalizedColor = normalizeColor(color);
float ledConsumption = modelCurrentConsumption(normalizedColor);
return ledConsumption * durationMs * 10e6;
};
float MultiColorLight::modelChargeConsumption(leds leds, uint32_t color,
uint16_t durationMs) {
float ledsConsumption = 0;
switch (leds) {
case TOP_LEFT:
ledsConsumption =
MultiColorLight::modelChargeConsumption(1, color, durationMs);
break;
case TOP_RIGHT:
ledsConsumption =
MultiColorLight::modelChargeConsumption(0, color, durationMs);
break;
case BOTTOM:
ledsConsumption =
MultiColorLight::modelChargeConsumption(2, color, durationMs);
break;
case TOP:
for (int index = 0; index < 2; index++) {
ledsConsumption +=
MultiColorLight::modelChargeConsumption(index, color, durationMs);
}
break;
case ALL:
for (int index = 0; index < ledAmount; index++) {
ledsConsumption +=
MultiColorLight::modelChargeConsumption(index, color, durationMs);
}
break;
default:
// TODO logging
break;
}
};
float MultiColorLight::modelChargeConsumption(leds leds, uint8_t red,
uint8_t green, uint8_t blue,
uint16_t durationMs) {
return MultiColorLight::modelChargeConsumption(
leds, MultiColorLight::color(red, green, blue), durationMs);
};