Add power Modeling functions to all components

This commit is contained in:
2025-02-15 21:42:41 +01:00
parent 5cb25a412a
commit ff80ebe4db
13 changed files with 672 additions and 334 deletions

View File

@ -1,91 +1,103 @@
#include "ColorDetection.h"
#include "ColorDetection.h"
void ColorDetection::begin(void){
if(!Power::waitForCurrentAllowance(
PowerParameters::PowerConsumers::RGBW_SENSOR,
PowerParameters::CurrentConsumptions::CURRENT_SENSOR_RGBW,
COLOR_DETECTION_MAX_EXECUTION_DELAY_MS, NULL)){
ESP_LOGE(TAG,"Could not get power for ColorDetection");
throw "Could not get power for ColorDetection";
void ColorDetection::begin(void) {
if (!Power::waitForCurrentAllowance(
PowerParameters::PowerConsumers::RGBW_SENSOR,
PowerParameters::CurrentConsumptions::CURRENT_SENSOR_RGBW,
COLOR_DETECTION_MAX_EXECUTION_DELAY_MS, NULL)) {
ESP_LOGE(TAG, "Could not get power for ColorDetection");
throw "Could not get power for ColorDetection";
}
ColorDetection::configure(
VEML_CONFIG{.mode = AUTO, .enabled = true, .exposureTime = MS40});
};
void ColorDetection::configure(VEML_CONFIG config){
uint8_t configRegister = 0;
switch(config.exposureTime)
{
case MS40:
configRegister = 0x00;break;
case MS80:
configRegister = 0x01;break;
case MS160:
configRegister = 0x02;break;
case MS320:
configRegister = 0x03;break;
case MS640:
configRegister = 0x04;break;
case MS1280:
configRegister = 0x05;break;
}
configRegister = configRegister << 4;
if(config.mode == MANUAL)
{
configRegister = configRegister | (0x01<<1);
}
if(!config.enabled)
{
configRegister = configRegister | 1;
}
ColorDetection::writeDoubleRegister(CMD_CONFIG,(uint16_t)configRegister);
void ColorDetection::configure(VEML_CONFIG config) {
uint8_t configRegister = 0;
switch (config.exposureTime) {
case MS40:
configRegister = 0x00;
break;
case MS80:
configRegister = 0x01;
break;
case MS160:
configRegister = 0x02;
break;
case MS320:
configRegister = 0x03;
break;
case MS640:
configRegister = 0x04;
break;
case MS1280:
configRegister = 0x05;
break;
}
configRegister = configRegister << 4;
if (config.mode == MANUAL) {
configRegister = configRegister | (0x01 << 1);
}
if (!config.enabled) {
configRegister = configRegister | 1;
}
ColorDetection::writeDoubleRegister(CMD_CONFIG, (uint16_t)configRegister);
};
uint16_t ColorDetection::getColorValue(color color){
switch(color)
{
case VEML_RED:
return readDoubleRegister(REG_RED);
break;
case VEML_GREEN:
return readDoubleRegister(REG_GREEN);
break;
case VEML_BLUE:
return readDoubleRegister(REG_BLUE);
break;
case VEML_WHITE:
return readDoubleRegister(REG_WHITE);
break;
default:
Serial.println("Color is not supported by the sensor");
return 0;
}
uint16_t ColorDetection::getColorValue(color color) {
switch (color) {
case VEML_RED:
return readDoubleRegister(REG_RED);
break;
case VEML_GREEN:
return readDoubleRegister(REG_GREEN);
break;
case VEML_BLUE:
return readDoubleRegister(REG_BLUE);
break;
case VEML_WHITE:
return readDoubleRegister(REG_WHITE);
break;
default:
Serial.println("Color is not supported by the sensor");
return 0;
}
};
uint16_t ColorDetection::readDoubleRegister(uint8_t regAddr){
uint16_t result = 0;
Wire.beginTransmission(VEML_ADDR);
Wire.write(regAddr);
if(Wire.endTransmission() != 0){
Serial.printf("Reading Register %d failed",regAddr);
}
Wire.requestFrom(VEML_ADDR,2);
uint8_t offset = 0;
while(Wire.available()){
result = result << 8;
result = result | (Wire.read()<<offset);
offset = offset + 8;
}
return result;
uint16_t ColorDetection::readDoubleRegister(uint8_t regAddr) {
uint16_t result = 0;
Wire.beginTransmission(VEML_ADDR);
Wire.write(regAddr);
if (Wire.endTransmission() != 0) {
Serial.printf("Reading Register %d failed", regAddr);
}
Wire.requestFrom(VEML_ADDR, 2);
uint8_t offset = 0;
while (Wire.available()) {
result = result << 8;
result = result | (Wire.read() << offset);
offset = offset + 8;
}
return result;
};
void ColorDetection::writeDoubleRegister(uint8_t regAddr, uint16_t data){
//erst low dann high
Wire.beginTransmission(VEML_ADDR);
Wire.write(regAddr);
Wire.write((uint8_t)(data&0x00FF));
Wire.write((uint8_t)((data>>8)&0x00FF));
if(Wire.endTransmission() != 0){
Serial.printf("Reading Register %d failed",regAddr);
}
};
void ColorDetection::writeDoubleRegister(uint8_t regAddr, uint16_t data) {
// erst low dann high
Wire.beginTransmission(VEML_ADDR);
Wire.write(regAddr);
Wire.write((uint8_t)(data & 0x00FF));
Wire.write((uint8_t)((data >> 8) & 0x00FF));
if (Wire.endTransmission() != 0) {
Serial.printf("Reading Register %d failed", regAddr);
}
};
float ColorDetection::modelCurrentConsumption() {
return PowerParameters::CurrentConsumptions::CURRENT_SENSOR_RGBW;
};
float ColorDetection::modelChargeConsumption(uint16_t durationMs) {
return PowerParameters::CurrentConsumptions::CURRENT_SENSOR_RGBW *
durationMs * 10e6;
}

View File

@ -65,7 +65,28 @@ public:
void begin(void);
void configure(VEML_CONFIG config);
uint16_t getColorValue(color color);
protected:
/**
* @brief Current consumtion of the sensor
* @note May not be accurate, as it is not known if the consumption is
* constant, or only if sensor is active. Could not be measured.
*
* @return
*/
float modelCurrentConsumption();
/**
* @brief Estimates charge consumption of the sensor for the given duration
* @note May not be accurate, as it is not known if the consumption is
* constant, or only if sensor is active. Could not be measured.
*
* @param durationMs
* @return float
*/
float modelChargeConsumption(uint16_t durationMs);
protected:
uint16_t readDoubleRegister(uint8_t regAddr);
void writeDoubleRegister(uint8_t regAddr, uint16_t data);
};

View File

@ -179,3 +179,11 @@ void Display::invertColor(void){
}
this->colorInverted = !this->colorInverted;
};
float modelCurrentConsumption() {
return PowerParameters::CurrentConsumptions::CURRENT_DISPLAY;
};
float modelChargeConsumptionOn(uint16_t durationMs) {
return PowerParameters::CurrentConsumptions::CURRENT_DISPLAY * durationMs * 10e6;
};

View File

@ -127,6 +127,19 @@ class Display{
*
*/
void invertColor(void);
/**
* @brief Estimate the current consumption of the display
* @return consumed current in milliamperes
*/
float modelCurrentConsumption();
/**
* @brief Estimate the energy consumption of the display
* @param durationMs time the display will be on
* @return consumed energy in coloumbs
*/
float modelChargeConsumptionOn(uint16_t durationMs);
};

View File

@ -4,6 +4,7 @@
#define IR_FRONT_PIN 14
#define IR_BOTTOM_PIN 13
#define DUTY_RESOLUTION LEDC_TIMER_10_BIT
#define DUTY_CYCLE_FREQUENCY 512
InfraredLED::InfraredLED(uint8_t pin,ledc_timer_t timer, ledc_channel_t channel){
this->ledPin = pin;
@ -78,27 +79,53 @@ void InfraredLED::setState(bool state){
};
void InfraredLED::sendFrequency(uint16_t frequency){
constexpr uint32_t duty = 512;
constexpr uint32_t duty = DUTY_CYCLE_FREQUENCY;
// Float to force float division without casting
constexpr float resolution = 1 << DUTY_RESOLUTION;
if (this->ledPin == IR_BOTTOM_PIN) {
float currentConsumption =
(duty / resolution) *
PowerParameters::CurrentConsumptions::CURRENT_LED_IR_BOTTOM;
Power::waitForCurrentAllowance(
PowerParameters::PowerConsumers::LED_IR_BOTTOM,
currentConsumption,
IR_LED_MAX_EXECUTION_DELAY_MS, NULL);
this->modelCurrentConsumption(duty), IR_LED_MAX_EXECUTION_DELAY_MS,
NULL);
} else if (this->ledPin == IR_FRONT_PIN) {
float currentConsumption =
(duty / resolution) *
PowerParameters::CurrentConsumptions::CURRENT_LED_IR_FRONT;
Power::waitForCurrentAllowance(
PowerParameters::PowerConsumers::LED_IR_FRONT,
currentConsumption,
IR_LED_MAX_EXECUTION_DELAY_MS, NULL);
this->modelCurrentConsumption(duty), IR_LED_MAX_EXECUTION_DELAY_MS,
NULL);
}
ledc_set_freq(pwmSpeedMode,timer,frequency);
ledc_set_duty(pwmSpeedMode,channel,duty);
ledc_update_duty(pwmSpeedMode,channel);
};
};
float InfraredLED::modelCurrentConsumption(uint32_t duty){
// Float to force float division without casting
constexpr float max_value = 1 << DUTY_RESOLUTION;
const float duty_factor = duty / max_value;
if (this->ledPin == IR_BOTTOM_PIN) {
return duty_factor * PowerParameters::CurrentConsumptions::CURRENT_LED_IR_BOTTOM;
} else if (this->ledPin == IR_FRONT_PIN) {
return duty_factor * PowerParameters::CurrentConsumptions::CURRENT_LED_IR_FRONT;
}
return NAN;
};
float InfraredLED::modelChargeConsumptionOn(uint16_t durationMs) {
// Float to force float division without casting
constexpr float resolution = 1 << DUTY_RESOLUTION;
if (this->ledPin == IR_BOTTOM_PIN) {
return durationMs *
PowerParameters::CurrentConsumptions::CURRENT_LED_IR_BOTTOM * 10e6;
} else if (this->ledPin == IR_FRONT_PIN) {
return durationMs *
PowerParameters::CurrentConsumptions::CURRENT_LED_IR_FRONT * 10e6;
}
return NAN;
}
float InfraredLED::modelChargeConsumptionSendFrequency(uint16_t durationMs) {
// Float to force float division without casting
return durationMs * this->modelCurrentConsumption(DUTY_CYCLE_FREQUENCY) *
10e6;
}

View File

@ -48,7 +48,32 @@ class InfraredLED{
* @param frequency
*/
void sendFrequency(uint16_t frequency);
protected:
/**
* @brief Estimate the current consumption of setting the specified led to the
* passed duty cycle
* @param duty the duty cycle of the led
* @return consumed current in milliamperes
*/
float modelCurrentConsumption(uint32_t duty);
/**
* @brief Estimate the energy consumption of turning the infrared led on
* @param durationMs time the led will be on
* @return consumed energy in coloumbs
*/
float modelChargeConsumptionOn(uint16_t durationMs);
/**
* @brief Estimate the energy consumption of sending a frequency on the
* infrared led
* @param durationMs time the led will be on
* @param frequency the frequency the led will be flashing
* @return consumed energy in coloumbs
*/
float modelChargeConsumptionSendFrequency(uint16_t durationMs);
protected:
uint8_t ledPin;
ledc_timer_t timer;
ledc_channel_t channel;

View File

@ -78,7 +78,23 @@ public:
* @return the average of all taken meaurments
*/
static uint32_t getAverageValue(photoTransistors sensor, uint32_t measurments, uint32_t timeBetween);
protected:
/**
* @brief Get current consumption of the selected PTs
*
* @return float the current consumption of the PTs
*/
static float modelCurrentConsumption(void);
/**
* @brief Estimate the energy consumption of setting the specified led to
* the passed color
* @param durationMs time the led will be on
* @return consumed energy in coloumbs
*/
float modelChargeConsumptionOn(uint16_t durationMs);
protected:
static const uint8_t IR_PT_FRONT_ADC = 3;
static const uint8_t IR_PT_LEFT_ADC = 4;
static const uint8_t IR_PT_RIGHT_ADC = 5;

View File

@ -56,6 +56,24 @@ class Motor{
* @return current speedvalue of the motor
*/
uint16_t getSpeed(void);
/**
* @brief Get the current consumption of the motor at specified speed
*
* @param duty the duty cyle that should be considered, can be between 0-8192
*
* @return current consumption in milliamperes
*/
float modelCurrentConsumption(uint16_t duty);
/**
* @brief Estimate the energy consumption of the display
* @param durationMs time the display will be on
* @return consumed energy in coloumbs
*/
float modelChargeConsumptionOn(uint16_t duty, uint16_t durationMs);
protected:
uint8_t pin;
ledc_timer_t timer;

View File

@ -25,9 +25,7 @@ void Motor::begin(void) {
};
bool Motor::setSpeed(uint16_t duty) {
const float dutyFactor = duty / static_cast<float>(1 << DUTY_RES);
const float current =
PowerParameters::CurrentConsumptions::CURRENT_MOTOR_T_ON * dutyFactor;
const float current = this->modelCurrentConsumption(duty);
if (this->pin == MOTOR_LEFT_PIN) {
if (!Power::waitForCurrentAllowance(
PowerParameters::PowerConsumers::MOTOR_LEFT, current,
@ -69,3 +67,12 @@ bool Motor::setSpeed(uint16_t duty) {
};
uint16_t Motor::getSpeed(void) { return this->duty; };
float modelCurrentConsumption(uint16_t duty) {
const float dutyFactor = duty / static_cast<float>(1 << DUTY_RES);
return PowerParameters::CurrentConsumptions::CURRENT_MOTOR_T_ON * dutyFactor;
}
float modelChargeConsumptionOn(uint16_t duty, uint16_t durationMs) {
return modelCurrentConsumption(duty) * durationMs * 10e6;
}

View File

@ -293,4 +293,13 @@ void MotionDetection::writeRegister(uint8_t reg, uint8_t value){
digitalWrite(34,HIGH);
delayMicroseconds(10);
handler->endTransaction();
};
};
float MotionDetection::modelCurrentConsumption(){
return PowerParameters::CurrentConsumptions::CURRENT_IMU;
}
float MotionDetection::modelChargeConsumption(uint16_t durationMs){
return this->modelCurrentConsumption() * durationMs * 10e6;
}

View File

@ -187,5 +187,21 @@ public:
* @return the amount of acutally fetched packages
*/
uint getDataFromFIFO(FIFO_Package* buffer);
/**
* @brief Current consumtion of the sensor
*
* @return
*/
float modelCurrentConsumption();
/**
* @brief Estimates charge consumption of the sensor for the given duration
*
* @param durationMs
* @return float
*/
float modelChargeConsumption(uint16_t durationMs);
};
#endif //MotionDetection

View File

@ -1,142 +1,245 @@
#include "MultiColorLight.h"
MultiColorLight::MultiColorLight():rgbLeds(ledAmount,ledPin){
MultiColorLight::MultiColorLight()
: rgbLeds(ledAmount, ledPin) {
};
void MultiColorLight::begin(void) {
if (!Power::waitForCurrentAllowance(
PowerParameters::PowerConsumers::LED_RGB_TOP_LEFT,
PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_BASE,
MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS, NULL) &&
Power::waitForCurrentAllowance(
PowerParameters::PowerConsumers::LED_RGB_TOP_RIGHT,
PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_BASE,
MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS, NULL) &&
Power::waitForCurrentAllowance(
PowerParameters::PowerConsumers::LED_RGB_BOTTOM,
PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_BASE,
MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS, NULL)) {
ESP_LOGE(TAG, "Could not get power for MultiColorLight");
Serial.println("Could not get power for MultiColorLight");
}
rgbLeds.begin();
this->turnOffLed();
};
void MultiColorLight::begin(void){
if(!Power::waitForCurrentAllowance(PowerParameters::PowerConsumers::LED_RGB_TOP_LEFT, PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_BASE, MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS, NULL) &&
Power::waitForCurrentAllowance(PowerParameters::PowerConsumers::LED_RGB_TOP_RIGHT, PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_BASE, MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS, NULL) &&
Power::waitForCurrentAllowance(PowerParameters::PowerConsumers::LED_RGB_BOTTOM, PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_BASE, MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS, NULL) ){
ESP_LOGE(TAG, "Could not get power for MultiColorLight");
Serial.println("Could not get power for MultiColorLight");
void MultiColorLight::setLed(uint8_t index, uint32_t color) {
if (index > ledAmount - 1) {
// TODO: logging
}
uint32_t normalizedColor = normalizeColor(color);
float totalConsumption = modelCurrentConsumption(normalizedColor);
switch (index) {
case 0:
if (!Power::waitForCurrentAllowance(
PowerParameters::PowerConsumers::LED_RGB_TOP_RIGHT,
totalConsumption, MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS, NULL)) {
ESP_LOGW(TAG,
"Power to set LED RGB TOP RIGHT to color 0x%.8X not granted in "
"time. Skipping.",
normalizedColor);
return;
}
rgbLeds.begin();
this->turnOffLed();
break;
case 1:
if (!Power::waitForCurrentAllowance(
PowerParameters::PowerConsumers::LED_RGB_TOP_LEFT, totalConsumption,
MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS, NULL)) {
ESP_LOGW(TAG,
"Power to set LED RGB TOP LEFT to color 0x%.8X not granted in "
"time. Skipping.",
normalizedColor);
return;
}
break;
case 2:
if (!Power::waitForCurrentAllowance(
PowerParameters::PowerConsumers::LED_RGB_BOTTOM, totalConsumption,
MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS, NULL)) {
ESP_LOGW(TAG,
"Power to set LED RGB BOTTOM to color 0x%.8X not granted in "
"time. Skipping.",
normalizedColor);
return;
}
break;
}
rgbLeds.setPixelColor(index, normalizedColor);
rgbLeds.show();
};
void MultiColorLight::setLed(uint8_t index , uint32_t color){
if (index > ledAmount-1){
//TODO: logging
void MultiColorLight::setLed(leds leds, uint32_t color) {
switch (leds) {
case TOP_LEFT:
MultiColorLight::setLed(1, color);
break;
case TOP_RIGHT:
MultiColorLight::setLed(0, color);
break;
case BOTTOM:
MultiColorLight::setLed(2, color);
break;
case TOP:
for (int index = 0; index < 2; index++) {
MultiColorLight::setLed(index, color);
}
uint32_t normalizedColor = normalizeColor(color);
uint16_t colorComponentRed = (normalizedColor & 0x00FF0000) >> 16;
uint16_t colorComponentGreen = (normalizedColor & 0x0000FF00) >> 8;
uint16_t colorComponentBlue = (normalizedColor & 0x000000FF);
float redChannelConsumption = (colorComponentRed/255.0) * PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_CHAN_T_ON;
float greenChannelConsumption = (colorComponentGreen/255.0) * PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_CHAN_T_ON;
float blueChannelConsumption = (colorComponentBlue/255.0) * PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_CHAN_T_ON;
float totalConsumption = redChannelConsumption + greenChannelConsumption + blueChannelConsumption + PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_BASE;
switch (index) {
case 0:
if(!Power::waitForCurrentAllowance(PowerParameters::PowerConsumers::LED_RGB_TOP_RIGHT, totalConsumption, MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS, NULL)){
ESP_LOGW(TAG, "Power to set LED RGB TOP RIGHT to color %d not granted in time. Skipping.", color);
return;
}
break;
case 1:
if(!Power::waitForCurrentAllowance(PowerParameters::PowerConsumers::LED_RGB_TOP_LEFT, totalConsumption, MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS, NULL)){
ESP_LOGW(TAG, "Power to set LED RGB TOP LEFT to color %d not granted in time. Skipping.", color);
return;
}
break;
case 2:
if(!Power::waitForCurrentAllowance(PowerParameters::PowerConsumers::LED_RGB_BOTTOM, totalConsumption, MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS, NULL)){
ESP_LOGW(TAG, "Power to set LED RGB BOTTOM to color %d not granted in time. Skipping.", color);
return;
}
break;
break;
case ALL:
for (int index = 0; index < ledAmount; index++) {
MultiColorLight::setLed(index, color);
}
rgbLeds.setPixelColor(index, normalizedColor);
rgbLeds.show();
break;
default:
// TODO logging
break;
}
};
void MultiColorLight::setLed(leds leds, uint32_t color){
switch (leds){
case TOP_LEFT:
MultiColorLight::setLed(1,color);break;
case TOP_RIGHT:
MultiColorLight::setLed(0,color);break;
case BOTTOM:
MultiColorLight::setLed(2,color);break;
case TOP:
for (int index = 0; index<2; index++){
MultiColorLight::setLed(index,color);
}break;
case ALL:
for (int index = 0; index<ledAmount; index++){
MultiColorLight::setLed(index,color);
}break;
default:
//TODO logging
break;
}
void MultiColorLight::setLed(leds leds, uint8_t red, uint8_t green,
uint8_t blue) {
MultiColorLight::setLed(leds, MultiColorLight::color(red, green, blue));
};
void MultiColorLight::setLed(leds leds, uint8_t red, uint8_t green, uint8_t blue){
MultiColorLight::setLed(leds, MultiColorLight::color(red,green,blue));
void MultiColorLight::setTopLeds(uint32_t color) {
MultiColorLight::setLed(TOP, color);
};
void MultiColorLight::setTopLeds(uint32_t color){
MultiColorLight::setLed(TOP,color);
};
void MultiColorLight::setTopLeds(uint8_t red, uint8_t green, uint8_t blue){
MultiColorLight::setTopLeds(MultiColorLight::color(red,green,blue));
};
void MultiColorLight::blink(uint16_t amount,uint32_t color, leds leds, uint32_t interval){
for(uint16_t index = 0; index < amount;index++){
MultiColorLight::setLed(leds, color);
vTaskDelay(interval);
MultiColorLight::turnOffLed(leds);
vTaskDelay(interval);
}
void MultiColorLight::setTopLeds(uint8_t red, uint8_t green, uint8_t blue) {
MultiColorLight::setTopLeds(MultiColorLight::color(red, green, blue));
};
void MultiColorLight::turnOffLed(leds leds){
switch (leds){
case TOP_LEFT:
MultiColorLight::setLed(1,0);break;
case TOP_RIGHT:
MultiColorLight::setLed(0,0);break;
case BOTTOM:
MultiColorLight::setLed(2,0);break;
case TOP:
for (int index = 0; index<2; index++){
MultiColorLight::setLed(index,0);
}break;
case ALL:
for (int index = 0; index<3; index++){
MultiColorLight::setLed(index,0);
}break;
default:
//TODO logging
break;
}
void MultiColorLight::blink(uint16_t amount, uint32_t color, leds leds,
uint32_t interval) {
for (uint16_t index = 0; index < amount; index++) {
MultiColorLight::setLed(leds, color);
vTaskDelay(interval);
MultiColorLight::turnOffLed(leds);
vTaskDelay(interval);
}
};
uint32_t MultiColorLight::color(uint8_t r, uint8_t g, uint8_t b){
return rgbLeds.Color(r,g,b);
void MultiColorLight::turnOffLed(leds leds) {
switch (leds) {
case TOP_LEFT:
MultiColorLight::setLed(1, 0);
break;
case TOP_RIGHT:
MultiColorLight::setLed(0, 0);
break;
case BOTTOM:
MultiColorLight::setLed(2, 0);
break;
case TOP:
for (int index = 0; index < 2; index++) {
MultiColorLight::setLed(index, 0);
}
break;
case ALL:
for (int index = 0; index < 3; index++) {
MultiColorLight::setLed(index, 0);
}
break;
default:
// TODO logging
break;
}
};
//PRIVATE
uint32_t MultiColorLight::normalizeColor(uint32_t color,uint8_t maxBrightness){
uint8_t red = (color&0x00FF0000)>>16;
uint8_t green = (color&0x0000FF00)>>8;
uint8_t blue = (color&0x000000FF);
if (red > maxBrightness){
red = maxBrightness;
uint32_t MultiColorLight::color(uint8_t r, uint8_t g, uint8_t b) {
return rgbLeds.Color(r, g, b);
};
// PRIVATE
uint32_t MultiColorLight::normalizeColor(uint32_t color,
uint8_t maxBrightness) {
uint8_t red = (color & 0x00FF0000) >> 16;
uint8_t green = (color & 0x0000FF00) >> 8;
uint8_t blue = (color & 0x000000FF);
if (red > maxBrightness) {
red = maxBrightness;
}
if (green > maxBrightness - 70) {
green = maxBrightness - 70;
}
if (blue > maxBrightness - 50) {
blue = maxBrightness - 50;
}
return MultiColorLight::color(red, green, blue);
};
float MultiColorLight::modelCurrentConsumption(uint32_t color) {
uint32_t normalizedColor = normalizeColor(color);
uint16_t colorComponentRed = (normalizedColor & 0x00FF0000) >> 16;
uint16_t colorComponentGreen = (normalizedColor & 0x0000FF00) >> 8;
uint16_t colorComponentBlue = (normalizedColor & 0x000000FF);
float redChannelConsumption =
(colorComponentRed / 255.0) *
PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_CHAN_T_ON;
float greenChannelConsumption =
(colorComponentGreen / 255.0) *
PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_CHAN_T_ON;
float blueChannelConsumption =
(colorComponentBlue / 255.0) *
PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_CHAN_T_ON;
return redChannelConsumption + greenChannelConsumption +
blueChannelConsumption +
PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_BASE;
};
float MultiColorLight::modelCurrentConsumption(uint8_t red, uint8_t green,
uint8_t blue) {
return modelCurrentConsumption(MultiColorLight::color(red, green, blue));
};
float MultiColorLight::modelChargeConsumption(uint8_t index, uint32_t color,
uint16_t durationMs) {
if (index > ledAmount - 1) {
// TODO: logging
}
uint32_t normalizedColor = normalizeColor(color);
float ledConsumption = modelCurrentConsumption(normalizedColor);
return ledConsumption * durationMs * 10e6;
};
float MultiColorLight::modelChargeConsumption(leds leds, uint32_t color,
uint16_t durationMs) {
float ledsConsumption = 0;
switch (leds) {
case TOP_LEFT:
ledsConsumption =
MultiColorLight::modelChargeConsumption(1, color, durationMs);
break;
case TOP_RIGHT:
ledsConsumption =
MultiColorLight::modelChargeConsumption(0, color, durationMs);
break;
case BOTTOM:
ledsConsumption =
MultiColorLight::modelChargeConsumption(2, color, durationMs);
break;
case TOP:
for (int index = 0; index < 2; index++) {
ledsConsumption +=
MultiColorLight::modelChargeConsumption(index, color, durationMs);
}
if(green > maxBrightness-70){
green = maxBrightness-70;
break;
case ALL:
for (int index = 0; index < ledAmount; index++) {
ledsConsumption +=
MultiColorLight::modelChargeConsumption(index, color, durationMs);
}
if(blue > maxBrightness-50){
blue = maxBrightness-50;
}
return MultiColorLight::color(red,green,blue);
}
break;
default:
// TODO logging
break;
}
};
float MultiColorLight::modelChargeConsumption(leds leds, uint8_t red,
uint8_t green, uint8_t blue,
uint16_t durationMs) {
return MultiColorLight::modelChargeConsumption(
leds, MultiColorLight::color(red, green, blue), durationMs);
};

View File

@ -1,146 +1,209 @@
/**
* @file MultiColorLight.h
* @author Saskia Duebener, Hans Haupt
* @brief This component controls the ability to show multicolored light, using the RGB-LEDs
* @brief This component controls the ability to show multicolored light, using
* the RGB-LEDs
* @version 0.2
* @date 2023-11-25
*
*
* @copyright Copyright (c) 2023
*
*
*/
#ifndef MultiColorLight_h
#define MultiColorLight_h
#include <Adafruit_NeoPixel.h>
#include "ColorConstants.h"
#include "../power/Power.h"
#include "ColorConstants.h"
#include <Adafruit_NeoPixel.h>
#define MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS 20
/**
* @brief Describes combinations of leds on the Dezibot.
* With the Robot in Front of you, when the robot drives away from you, the left LED is TOP_LEFT
*
* @brief Describes combinations of leds on the Dezibot.
* With the Robot in Front of you, when the robot drives away from you, the left
* LED is TOP_LEFT
*
*/
enum leds{
TOP_LEFT,
TOP_RIGHT,
BOTTOM,
TOP,
ALL
};
enum leds { TOP_LEFT, TOP_RIGHT, BOTTOM, TOP, ALL };
#define TAG "MultiColorLight"
class MultiColorLight{
class MultiColorLight {
protected:
static const uint16_t ledAmount = 3;
static const int16_t ledPin = 48;
static const uint8_t maxBrightness = 150;
Adafruit_NeoPixel rgbLeds;
static constexpr int maximumExecutionDelayMs = 10;
static const uint16_t ledAmount = 3;
static const int16_t ledPin = 48;
static const uint8_t maxBrightness = 150;
Adafruit_NeoPixel rgbLeds;
static constexpr int maximumExecutionDelayMs = 10;
public:
MultiColorLight();
/**
* @brief initialize the multicolor component
*
*/
void begin(void);
MultiColorLight();
/**
* @brief initialize the multicolor component
*
*/
void begin(void);
/**
* @brief Set the specified led to the passed color
* @param index ranging from 0-2, 0: Right, 1: Left, 2: Bottom
* @param color A 32-bit unsigned integer representing the color in the format
* 0x00RRGGBB, where RR is the red component, GG is the green
* component, and BB is the blue component. Each color can range between 0 to 100
*/
void setLed(uint8_t index , uint32_t color);
/**
* @brief Set the specified led to the passed color
* @param index ranging from 0-2, 0: Right, 1: Left, 2: Bottom
* @param color A 32-bit unsigned integer representing the color in the format
* 0x00RRGGBB, where RR is the red component, GG is the green
* component, and BB is the blue component. Each color can range
* between 0 to 100
*/
void setLed(uint8_t index, uint32_t color);
/**
* @brief Set the specified leds to the passed color value
*
* @param leds which leds should be updated
* @param color A 32-bit unsigned integer representing the color in the format
* 0x00RRGGBB, where RR is the red component, GG is the green
* component, and BB is the blue component. Each color can range between 0 to 100
*/
void setLed(leds leds, uint32_t color);
/**
* @brief Set the specified leds to the passed color value
*
* @param leds which leds should be updated
* @param color A 32-bit unsigned integer representing the color in the format
* 0x00RRGGBB, where RR is the red component, GG is the green
* component, and BB is the blue component. Each color can range
* between 0 to 100
*/
void setLed(leds leds, uint32_t color);
/**
* @brief Set the specified leds to the passed color value
*
* @param leds which leds should be updated
* @param red brightness of red, is normalized in the function
* @param green brightness of green, is normalized in the function
* @param blue brightness of blue, is normalized in the function
*/
void setLed(leds leds, uint8_t red, uint8_t green, uint8_t blue);
/**
* @brief sets the two leds on the top of the robot to the specified color
*
* @param color A 32-bit unsigned integer representing the color in the format
* 0x00RRGGBB, where RR is the red component, GG is the green
* component, and BB is the blue component. Each color can range between 0 to 100
*/
void setTopLeds(uint32_t color);
/**
* @brief Set the specified leds to the passed color value
*
* @param leds which leds should be updated
* @param red brightness of red, is normalized in the function
* @param green brightness of green, is normalized in the function
* @param blue brightness of blue, is normalized in the function
*/
void setLed(leds leds, uint8_t red, uint8_t green, uint8_t blue);
/**
* @brief sets the two leds on the top of the robot to the specified color
*
* @param red brightness of red, is normalized in the function
* @param green brightness of green, is normalized in the function
* @param blue brightness of blue, is normalized in the function
*/
void setTopLeds(uint8_t red, uint8_t green, uint8_t blue);
/**
* @brief Let LEDs blink, returns after all blinks were executed
*
* @param amount how often should the leds blink
* @param color A 32-bit unsigned integer representing the color in the format
* 0x00RRGGBB, where RR is the red component, GG is the green
* component, and BB is the blue component.
* Each color can range between 0 to 100
* Defaults to blue
* @param leds which LEDs should blink, default is TOP
* @param interval how many miliseconds the led is on, defaults to 1s
*/
void blink(uint16_t amount,uint32_t color = 0x00006400,leds leds=TOP, uint32_t interval=1000);
/**
* @brief calculates the current consumption of an LED with the given color
*
* @param color A 32-bit unsigned integer representing the color in the
* format 0x00RRGGBB, where RR is the red component, GG is the green
* component, and BB is the blue component.
* @return float the current consumption in mA
*/
float modelCurrentConsumption(uint32_t color);
/**
* @brief turn off the given leds
*
* @param leds which leds should be turned off, defaults to ALL
*/
void turnOffLed(leds leds=ALL);
/**
* @brief wrapper to calulate the used colorformat from a rgb-value
*
* @param r red (0-100)
* @param g green (0-100)
* @param b blue (0-100)
* @return A 32-bit unsigned integer representing the color in the format
* 0x00RRGGBB, where RR is the red component, GG is the green
* component, and BB is the blue component.
*/
uint32_t color(uint8_t r, uint8_t g, uint8_t b);
/**
* @brief calculates the current consumption of an LED with the given color
* @note color is not normalized in this function
*
* @param red brightness of red
* @param green brightness of green
* @param blue brightness of blue
* @return float the current consumption in mA
*/
float modelCurrentConsumption(uint8_t red, uint8_t green, uint8_t blue);
/**
* @brief Estimate the energy consumption of setting the specified led to the
* passed color
* @param index ranging from 0-2, 0: Right, 1: Left, 2: Bottom
* @param color A 32-bit unsigned integer representing the color in the
* format 0x00RRGGBB, where RR is the red component, GG is the green
* component, and BB is the blue component. Each color can
* range between 0 to 100
* @return consumed energy in coloumbs
*/
float modelChargeConsumption(uint8_t index, uint32_t color,
uint16_t durationMs);
/**
* @brief Estimate the energy consumption of setting the specified leds to the
* passed color value
*
* @param leds which leds should be considered
* @param color A 32-bit unsigned integer representing the color in the
* format 0x00RRGGBB, where RR is the red component, GG is the green
* component, and BB is the blue component. Each color can
* range between 0 to 100
* @return consumed energy in coloumbs
*/
float modelChargeConsumption(leds leds, uint32_t color,
uint16_t durationMs);
/**
* @brief Estimate the energy consumption of setting the specified leds to the
* passed color value
*
* @param leds which leds should be considered
* @param red brightness of red, is normalized in the function
* @param green brightness of green, is normalized in the function
* @param blue brightness of blue, is normalized in the function
* @return consumed energy in coloumbs
*/
float modelChargeConsumption(leds leds, uint8_t red, uint8_t green,
uint8_t blue, uint16_t durationMs);
/**
* @brief sets the two leds on the top of the robot to the specified color
*
* @param color A 32-bit unsigned integer representing the color in the format
* 0x00RRGGBB, where RR is the red component, GG is the green
* component, and BB is the blue component. Each color can range
* between 0 to 100
*/
void setTopLeds(uint32_t color);
/**
* @brief sets the two leds on the top of the robot to the specified color
*
* @param red brightness of red, is normalized in the function
* @param green brightness of green, is normalized in the function
* @param blue brightness of blue, is normalized in the function
*/
void setTopLeds(uint8_t red, uint8_t green, uint8_t blue);
/**
* @brief Let LEDs blink, returns after all blinks were executed
*
* @param amount how often should the leds blink
* @param color A 32-bit unsigned integer representing the color in the format
* 0x00RRGGBB, where RR is the red component, GG is the green
* component, and BB is the blue component.
* Each color can range between 0 to 100
* Defaults to blue
* @param leds which LEDs should blink, default is TOP
* @param interval how many miliseconds the led is on, defaults to 1s
*/
void blink(uint16_t amount, uint32_t color = 0x00006400, leds leds = TOP,
uint32_t interval = 1000);
/**
* @brief turn off the given leds
*
* @param leds which leds should be turned off, defaults to ALL
*/
void turnOffLed(leds leds = ALL);
/**
* @brief wrapper to calulate the used colorformat from a rgb-value
*
* @param r red (0-100)
* @param g green (0-100)
* @param b blue (0-100)
* @return A 32-bit unsigned integer representing the color in the format
* 0x00RRGGBB, where RR is the red component, GG is the green
* component, and BB is the blue component.
*/
uint32_t color(uint8_t r, uint8_t g, uint8_t b);
private:
/**
* @brief normalizes every component of color to not exeed the maxBrightness
*
* @param color A 32-bit unsigned integer representing the color in the format
* 0x00RRGGBB, where RR is the red component, GG is the green
* component, and BB is the blue component.
* @param maxBrigthness maximal level of brightness that is allowed for each color
* @return uint32_t A 32-bit unsigned integer representing the color in the format
* 0x00RRGGBB, where RR is the red component, GG is the green
* component, and BB is the blue component. Where each component can be
* between 0 - maxBrightness
*/
uint32_t normalizeColor(uint32_t color, uint8_t maxBrigthness=maxBrightness);
/**
* @brief normalizes every component of color to not exeed the maxBrightness
*
* @param color A 32-bit unsigned integer representing the color in the format
* 0x00RRGGBB, where RR is the red component, GG is the green
* component, and BB is the blue component.
* @param maxBrigthness maximal level of brightness that is allowed for each
* color
* @return uint32_t A 32-bit unsigned integer representing the color in the
* format 0x00RRGGBB, where RR is the red component, GG is the green
* component, and BB is the blue component. Where each component
* can be between 0 - maxBrightness
*/
uint32_t normalizeColor(uint32_t color,
uint8_t maxBrigthness = maxBrightness);
};
#endif //MultiColorLight_h
#endif // MultiColorLight_h