cross-links: refactored collision test
This commit is contained in:
parent
f47c9bb234
commit
e40249fcd0
@ -18,204 +18,179 @@
|
||||
|
||||
// PLUGIN START ////////////////////////////////////////////////////////
|
||||
|
||||
|
||||
window.plugin.crossLinks = function() {};
|
||||
|
||||
// Great Circle Arc Intersection
|
||||
// http://geospatialmethods.org/spheres/GCAIntersect.html
|
||||
function intersect(a, b) {
|
||||
var PI = Math.PI,
|
||||
radians = PI / 180,
|
||||
ε = 1e-6;
|
||||
/* Great Circle Arc Intersection
|
||||
Conecpt in short:
|
||||
- build a plane of each arc (p1,p2,center)
|
||||
- find intersection line and intersection points on sphere
|
||||
- check if a point are on both arcs
|
||||
see: http://geospatialmethods.org/spheres/GCAIntersect.html
|
||||
*/
|
||||
var PI = Math.PI;
|
||||
var radians = PI / 180;
|
||||
var near_0 = 1e-6;
|
||||
|
||||
var λ0 = a[0][0],
|
||||
λ1 = a[1][0],
|
||||
λ2 = b[0][0],
|
||||
λ3 = b[1][0],
|
||||
δλ0 = λ1 - λ0,
|
||||
δλ1 = λ3 - λ2,
|
||||
aδλ0 = Math.abs(δλ0),
|
||||
aδλ1 = Math.abs(δλ1),
|
||||
sλ0 = aδλ0 > 180,
|
||||
sλ1 = aδλ1 > 180,
|
||||
φ0 = a[0][1] * radians,
|
||||
φ1 = a[1][1] * radians,
|
||||
φ2 = b[0][1] * radians,
|
||||
φ3 = b[1][1] * radians,
|
||||
t;
|
||||
function greatCircleArcIntersect(a0,a1,b0,b1) {
|
||||
|
||||
// Ensure λ0 ≤ λ1 and λ2 ≤ λ3.
|
||||
if (δλ0 < 0) t = λ0, λ0 = λ1, λ1 = t, t = φ0, φ0 = φ1, φ1 = t;
|
||||
if (δλ1 < 0) t = λ2, λ2 = λ3, λ3 = t, t = φ2, φ2 = φ3, φ3 = t;
|
||||
// Order points
|
||||
if (a1.lat < a0.lat) { var t=a1;a1=a0;a0=t;}
|
||||
if (b1.lat < b0.lat) { var t=b1;b1=b0;b0=t;}
|
||||
|
||||
// Check if longitude ranges overlap.
|
||||
// TODO handle antimeridian crossings.
|
||||
if (!sλ0 && !sλ1 && (λ0 > λ3 || λ2 > λ1)) return;
|
||||
var λ0 = a0.lat,
|
||||
λ1 = a1.lat,
|
||||
λ2 = b0.lat,
|
||||
λ3 = b1.lat,
|
||||
δλ0 = λ1 - λ0,
|
||||
δλ1 = λ3 - λ2,
|
||||
sλ0 = δλ0 > 180,
|
||||
sλ1 = δλ1 > 180,
|
||||
φ0 = a0.lng * radians,
|
||||
φ1 = a1.lng * radians,
|
||||
φ2 = b0.lng * radians,
|
||||
φ3 = b1.lng * radians,
|
||||
t;
|
||||
|
||||
// Check for polar endpoints.
|
||||
if (Math.abs(Math.abs(φ0) - PI / 2) < ε) λ0 = λ1, aδλ0 = δλ0 = 0, sλ0 = false;
|
||||
if (Math.abs(Math.abs(φ1) - PI / 2) < ε) λ1 = λ0, aδλ0 = δλ0 = 0, sλ0 = false;
|
||||
if (Math.abs(Math.abs(φ2) - PI / 2) < ε) λ2 = λ3, aδλ1 = δλ1 = 0, sλ1 = false;
|
||||
if (Math.abs(Math.abs(φ3) - PI / 2) < ε) λ3 = λ2, aδλ1 = δλ1 = 0, sλ1 = false;
|
||||
// Check if longitude ranges overlap.
|
||||
// TODO handle antimeridian crossings.
|
||||
if (!sλ0 && !sλ1 && (λ0 > λ3 || λ2 > λ1)) return;
|
||||
|
||||
// Check for arcs along meridians.
|
||||
var m0 = aδλ0 < ε || Math.abs(aδλ0 - 180) < ε,
|
||||
m1 = aδλ1 < ε || Math.abs(aδλ1 - 180) < ε;
|
||||
// Check for polar endpoints.
|
||||
if (Math.abs(Math.abs(φ0) - PI / 2) < near_0) λ0 = λ1, δλ0 = 0, sλ0 = false;
|
||||
if (Math.abs(Math.abs(φ1) - PI / 2) < near_0) λ1 = λ0, δλ0 = 0, sλ0 = false;
|
||||
if (Math.abs(Math.abs(φ2) - PI / 2) < near_0) λ2 = λ3, δλ1 = 0, sλ1 = false;
|
||||
if (Math.abs(Math.abs(φ3) - PI / 2) < near_0) λ3 = λ2, δλ1 = 0, sλ1 = false;
|
||||
|
||||
λ0 *= radians, λ1 *= radians, λ2 *= radians, λ3 *= radians;
|
||||
// Check for arcs along meridians.
|
||||
var m0 = δλ0 < near_0 || Math.abs(δλ0 - 180) < near_0,
|
||||
m1 = δλ1 < near_0 || Math.abs(δλ1 - 180) < near_0;
|
||||
|
||||
// Intersect two great circles and check the two intersection points against
|
||||
// the longitude ranges. The intersection points are simply the cross
|
||||
// product of the great-circle normals ±n1⨯n2.
|
||||
λ0 *= radians, λ1 *= radians, λ2 *= radians, λ3 *= radians;
|
||||
|
||||
// First plane.
|
||||
var cosφ,
|
||||
x0 = (cosφ = Math.cos(φ0)) * Math.cos(λ0),
|
||||
y0 = cosφ * Math.sin(λ0),
|
||||
z0 = Math.sin(φ0),
|
||||
x1 = (cosφ = Math.cos(φ1)) * Math.cos(λ1),
|
||||
y1 = cosφ * Math.sin(λ1),
|
||||
z1 = Math.sin(φ1),
|
||||
n0x = y0 * z1 - z0 * y1,
|
||||
n0y = z0 * x1 - x0 * z1,
|
||||
n0z = x0 * y1 - y0 * x1,
|
||||
m = length(n0x, n0y, n0z);
|
||||
// Intersect two great circles and check the two intersection points against
|
||||
// the longitude ranges. The intersection points are simply the cross
|
||||
// product of the great-circle normals ±n1⨯n2.
|
||||
|
||||
n0x /= m, n0y /= m, n0z /= m;
|
||||
// First plane.
|
||||
var cosφ,
|
||||
x0 = (cosφ = Math.cos(φ0)) * Math.cos(λ0),
|
||||
y0 = cosφ * Math.sin(λ0),
|
||||
z0 = Math.sin(φ0),
|
||||
x1 = (cosφ = Math.cos(φ1)) * Math.cos(λ1),
|
||||
y1 = cosφ * Math.sin(λ1),
|
||||
z1 = Math.sin(φ1),
|
||||
n0x = y0 * z1 - z0 * y1,
|
||||
n0y = z0 * x1 - x0 * z1,
|
||||
n0z = x0 * y1 - y0 * x1,
|
||||
m = length(n0x, n0y, n0z);
|
||||
|
||||
// Second plane.
|
||||
var x2 = (cosφ = Math.cos(φ2)) * Math.cos(λ2),
|
||||
y2 = cosφ * Math.sin(λ2),
|
||||
z2 = Math.sin(φ2),
|
||||
x3 = (cosφ = Math.cos(φ3)) * Math.cos(λ3),
|
||||
y3 = cosφ * Math.sin(λ3),
|
||||
z3 = Math.sin(φ3),
|
||||
n1x = y2 * z3 - z2 * y3,
|
||||
n1y = z2 * x3 - x2 * z3,
|
||||
n1z = x2 * y3 - y2 * x3,
|
||||
m = length(n1x, n1y, n1z);
|
||||
n0x /= m, n0y /= m, n0z /= m;
|
||||
|
||||
n1x /= m, n1y /= m, n1z /= m;
|
||||
// Second plane.
|
||||
var x2 = (cosφ = Math.cos(φ2)) * Math.cos(λ2),
|
||||
y2 = cosφ * Math.sin(λ2),
|
||||
z2 = Math.sin(φ2),
|
||||
x3 = (cosφ = Math.cos(φ3)) * Math.cos(λ3),
|
||||
y3 = cosφ * Math.sin(λ3),
|
||||
z3 = Math.sin(φ3),
|
||||
n1x = y2 * z3 - z2 * y3,
|
||||
n1y = z2 * x3 - x2 * z3,
|
||||
n1z = x2 * y3 - y2 * x3,
|
||||
m = length(n1x, n1y, n1z);
|
||||
|
||||
var Nx = n0y * n1z - n0z * n1y,
|
||||
Ny = n0z * n1x - n0x * n1z,
|
||||
Nz = n0x * n1y - n0y * n1x;
|
||||
n1x /= m, n1y /= m, n1z /= m;
|
||||
|
||||
if (length(Nx, Ny, Nz) < ε) return;
|
||||
var Nx = n0y * n1z - n0z * n1y,
|
||||
Ny = n0z * n1x - n0x * n1z,
|
||||
Nz = n0x * n1y - n0y * n1x;
|
||||
|
||||
var λ = Math.atan2(Ny, Nx);
|
||||
if ((sλ0 ^ (λ0 <= λ && λ <= λ1) || m0 && Math.abs(λ - λ0) < ε) && (sλ1 ^ (λ2 <= λ && λ <= λ3) || m1 && Math.abs(λ - λ2) < ε) || (Nz = -Nz,
|
||||
(sλ0 ^ (λ0 <= (λ = (λ + 2 * PI) % (2 * PI) - PI) && λ <= λ1) || m0 && Math.abs(λ - λ0) < ε) && (sλ1 ^ (λ2 <= λ && λ <= λ3) || m1 && Math.abs(λ - λ2) < ε))) {
|
||||
var φ = Math.asin(Nz / length(Nx, Ny, Nz));
|
||||
if (m0 || m1) {
|
||||
if (m1) φ0 = φ2, φ1 = φ3, λ0 = λ2, λ1 = λ3, aδλ0 = aδλ1;
|
||||
if (aδλ0 > ε) return φ0 + φ1 > 0 ^ φ < (Math.abs(λ - λ0) < ε ? φ0 : φ1) ? [λ / radians, φ / radians] : null;
|
||||
// Ensure φ0 ≤ φ1.
|
||||
if (φ1 < φ0) t = φ0, φ0 = φ1, φ1 = t;
|
||||
return Math.abs(λ - (m0 ? λ0 : λ2)) < ε && φ0 <= φ && φ <= φ1 ? [λ / radians, φ / radians] : null;
|
||||
if (length(Nx, Ny, Nz) < near_0) return;
|
||||
|
||||
var λ = Math.atan2(Ny, Nx);
|
||||
if ( (sλ0 ^ (λ0 <= λ && λ <= λ1) || m0 && Math.abs(λ - λ0) < near_0) && (sλ1 ^ (λ2 <= λ && λ <= λ3) || m1 && Math.abs(λ - λ2) < near_0) || (Nz = -Nz,
|
||||
(sλ0 ^ (λ0 <= (λ = (λ + 2 * PI) % (2 * PI) - PI) && λ <= λ1) || m0 && Math.abs(λ - λ0) < near_0) && (sλ1 ^ (λ2 <= λ && λ <= λ3) || m1 && Math.abs(λ - λ2) < near_0))) {
|
||||
|
||||
var φ = Math.asin(Nz / length(Nx, Ny, Nz));
|
||||
|
||||
if (m0 || m1) {
|
||||
if (m1) φ0 = φ2, φ1 = φ3, λ0 = λ2, λ1 = λ3, δλ0 = δλ1;
|
||||
|
||||
if (δλ0 > near_0)
|
||||
return (φ0 + φ1 > 0 ^ φ < (Math.abs(λ - λ0) < near_0 ? φ0 : φ1)) ? [λ / radians, φ / radians] : null;
|
||||
|
||||
// Ensure φ0 ≤ φ1.
|
||||
if (φ1 < φ0) t = φ0, φ0 = φ1, φ1 = t;
|
||||
return (Math.abs(λ - (m0 ? λ0 : λ2)) < near_0 && φ0 <= φ && φ <= φ1) ? [λ / radians, φ / radians] : null;
|
||||
}
|
||||
|
||||
return [λ / radians, φ / radians];
|
||||
}
|
||||
return [λ / radians, φ / radians];
|
||||
}
|
||||
}
|
||||
|
||||
function length(x, y, z) {
|
||||
return Math.sqrt(x * x + y * y + z * z);
|
||||
}
|
||||
|
||||
window.plugin.crossLinks.testPolyLine = function (polyline, link) {
|
||||
var a= [[link[0].lat,link[0].lng],[link[1].lat,link[1].lng]];
|
||||
for (var i=0;i<polyline.length-1;++i) {
|
||||
/*
|
||||
smallCircleIntersect
|
||||
idea:
|
||||
- build the plane of the small circle: normalvector (center) and p=center+radian // E:n1*x+n2*y+n3*z=n1*p1+n2*p2+n3*p3
|
||||
- calc distance to both points // d=(n1*x+n2*y+n3*z- (n1*p1+n2*p2+n3*p3)) / length(n)
|
||||
- both >0 = inside ; one >0 = collision
|
||||
*/
|
||||
|
||||
var b= [[polyline[i].lat,polyline[i].lng],[polyline[i+1].lat,polyline[i+1].lng]];
|
||||
if (intersect(a,b)) return true;
|
||||
window.plugin.crossLinks.testPolyLine = function (polyline, link,closed) {
|
||||
|
||||
var a = link.getLatLngs();
|
||||
var b = polyline.getLatLngs();
|
||||
|
||||
for (var i=0;i<b.length-1;++i) {
|
||||
if (greatCircleArcIntersect(a[0],a[1],b[i],b[i+1])) return true;
|
||||
}
|
||||
|
||||
if (closed) {
|
||||
if (greatCircleArcIntersect(a[0],a[1],b[b.length],b[0])) return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
function isPointInPolygon(poly, point) {
|
||||
// src: http://www.ecse.rpi.edu/Homepages/wrf/Research/Short_Notes/pnpoly.html
|
||||
var c = false;
|
||||
var p2 = poly[0];
|
||||
for (var i = 1; i < poly.length; ++i) {
|
||||
var p1 = poly[i];
|
||||
if ( ((p1.lng > point.lng) != (p2.lng>point.lng)) &&
|
||||
(point.lat < (p2.lat - p1.lat)*(point.lng-p1.lng) / (p2.lng-p1.lng) + p1.lat))
|
||||
c = !c;
|
||||
|
||||
p2 = p1;
|
||||
}
|
||||
return c;
|
||||
}
|
||||
|
||||
window.plugin.crossLinks.testPolygons = function (polygons, link) {
|
||||
|
||||
var linkline= L.geodesicConvertLines(link._latlngs,0);
|
||||
|
||||
for (var pidx=0;pidx<polygons.length;++pidx) {
|
||||
if (isPointInPolygon(polygons[pidx],linkline[0])) return true;
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
window.plugin.crossLinks.onLinkAdded = function (data) {
|
||||
if (window.plugin.crossLinks.disabled) return;
|
||||
|
||||
var link = data.link;
|
||||
plugin.crossLinks.testLink(data.link);
|
||||
}
|
||||
|
||||
window.plugin.crossLinks.checkAllLinks = function() {
|
||||
if (window.plugin.crossLinks.disabled) return;
|
||||
|
||||
console.debug("Cross-Links: checking all links");
|
||||
plugin.crossLinks.linkLayer.clearLayers();
|
||||
|
||||
$.each(window.links, function(guid, link) {
|
||||
plugin.crossLinks.testLink(link);
|
||||
});
|
||||
}
|
||||
|
||||
window.plugin.crossLinks.testLink = function (link) {
|
||||
window.plugin.drawTools.drawnItems.eachLayer( function(layer) {
|
||||
if (layer instanceof L.GeodesicPolygon) {
|
||||
latlngs = layer.getLatLngs();
|
||||
latlngs.push(latlngs[0]);
|
||||
if (window.plugin.crossLinks.testPolyLine(latlngs, link.getLatLngs())) {
|
||||
plugin.crossLinks.showLink(link.getLatLngs());
|
||||
if (window.plugin.crossLinks.testPolyLine(layer, link,true)) {
|
||||
plugin.crossLinks.showLink(link);
|
||||
}
|
||||
// TODO: rework inside-polygons
|
||||
/*
|
||||
var polyline= [drawline];
|
||||
} else if (window.plugin.crossLinks.testPolygons([drawline], link)) {
|
||||
link.setStyle (window.plugin.crossLinks.STYLE_INSIDEPOLY);
|
||||
}
|
||||
*/
|
||||
} else if (layer instanceof L.GeodesicPolyline) {
|
||||
|
||||
if (window.plugin.crossLinks.testPolyLine(layer.getLatLngs(), link.getLatLngs())) {
|
||||
plugin.crossLinks.showLink(link.getLatLngs());
|
||||
if (window.plugin.crossLinks.testPolyLine(layer, link)) {
|
||||
plugin.crossLinks.showLink(link);
|
||||
}
|
||||
}
|
||||
});
|
||||
}
|
||||
|
||||
window.plugin.crossLinks.checkAllLinks = function() {
|
||||
console.debug("Cross-Links: checking links");
|
||||
if (window.plugin.crossLinks.disabled) return;
|
||||
|
||||
plugin.crossLinks.linkLayer.clearLayers();
|
||||
window.plugin.crossLinks.showLink = function(link) {
|
||||
|
||||
// check all links
|
||||
$.each(window.links, function(guid, link) {
|
||||
|
||||
window.plugin.drawTools.drawnItems.eachLayer( function(layer) {
|
||||
if (layer instanceof L.GeodesicPolyline) {
|
||||
if (window.plugin.crossLinks.testPolyLine(layer.getLatLngs(), link.getLatLngs())) {
|
||||
plugin.crossLinks.showLink(link.getLatLngs());
|
||||
return false;
|
||||
}
|
||||
} else if (layer instanceof L.GeodesicPolygon) {
|
||||
latlngs = layer.getLatLngs();
|
||||
latlngs.push(latlngs[0]);
|
||||
if (window.plugin.crossLinks.testPolyLine(latlngs, link.getLatLngs())) {
|
||||
plugin.crossLinks.showLink(link.getLatLngs());
|
||||
}
|
||||
// TODO: rework inside-polygons
|
||||
}
|
||||
});
|
||||
});
|
||||
}
|
||||
|
||||
window.plugin.crossLinks.showLink = function(latlngs) {
|
||||
|
||||
var poly = L.geodesicPolyline(latlngs, {
|
||||
var poly = L.geodesicPolyline(link.getLatLngs(), {
|
||||
color: '#f11',
|
||||
opacity: 0.7,
|
||||
weight: 4,
|
||||
@ -223,7 +198,7 @@ window.plugin.crossLinks.showLink = function(latlngs) {
|
||||
});
|
||||
|
||||
poly.addTo(plugin.crossLinks.linkLayer);
|
||||
};
|
||||
}
|
||||
|
||||
window.plugin.crossLinks.onMapDataRefreshEnd = function () {
|
||||
if (window.plugin.crossLinks.reorderLinkLayer) {
|
||||
|
Loading…
x
Reference in New Issue
Block a user