mirror of
https://gitlab.dit.htwk-leipzig.de/phillip.kuehne/dezibot.git
synced 2025-07-04 01:31:41 +02:00
Add power Modeling functions to all components
This commit is contained in:
@ -1,49 +1,51 @@
|
||||
#include "ColorDetection.h"
|
||||
|
||||
void ColorDetection::begin(void){
|
||||
if(!Power::waitForCurrentAllowance(
|
||||
void ColorDetection::begin(void) {
|
||||
if (!Power::waitForCurrentAllowance(
|
||||
PowerParameters::PowerConsumers::RGBW_SENSOR,
|
||||
PowerParameters::CurrentConsumptions::CURRENT_SENSOR_RGBW,
|
||||
COLOR_DETECTION_MAX_EXECUTION_DELAY_MS, NULL)){
|
||||
ESP_LOGE(TAG,"Could not get power for ColorDetection");
|
||||
COLOR_DETECTION_MAX_EXECUTION_DELAY_MS, NULL)) {
|
||||
ESP_LOGE(TAG, "Could not get power for ColorDetection");
|
||||
throw "Could not get power for ColorDetection";
|
||||
}
|
||||
ColorDetection::configure(
|
||||
VEML_CONFIG{.mode = AUTO, .enabled = true, .exposureTime = MS40});
|
||||
};
|
||||
void ColorDetection::configure(VEML_CONFIG config){
|
||||
void ColorDetection::configure(VEML_CONFIG config) {
|
||||
uint8_t configRegister = 0;
|
||||
switch(config.exposureTime)
|
||||
{
|
||||
switch (config.exposureTime) {
|
||||
case MS40:
|
||||
configRegister = 0x00;break;
|
||||
configRegister = 0x00;
|
||||
break;
|
||||
case MS80:
|
||||
configRegister = 0x01;break;
|
||||
configRegister = 0x01;
|
||||
break;
|
||||
case MS160:
|
||||
configRegister = 0x02;break;
|
||||
configRegister = 0x02;
|
||||
break;
|
||||
case MS320:
|
||||
configRegister = 0x03;break;
|
||||
configRegister = 0x03;
|
||||
break;
|
||||
case MS640:
|
||||
configRegister = 0x04;break;
|
||||
configRegister = 0x04;
|
||||
break;
|
||||
case MS1280:
|
||||
configRegister = 0x05;break;
|
||||
configRegister = 0x05;
|
||||
break;
|
||||
}
|
||||
configRegister = configRegister << 4;
|
||||
if(config.mode == MANUAL)
|
||||
{
|
||||
configRegister = configRegister | (0x01<<1);
|
||||
if (config.mode == MANUAL) {
|
||||
configRegister = configRegister | (0x01 << 1);
|
||||
}
|
||||
if(!config.enabled)
|
||||
{
|
||||
if (!config.enabled) {
|
||||
configRegister = configRegister | 1;
|
||||
}
|
||||
ColorDetection::writeDoubleRegister(CMD_CONFIG,(uint16_t)configRegister);
|
||||
ColorDetection::writeDoubleRegister(CMD_CONFIG, (uint16_t)configRegister);
|
||||
};
|
||||
|
||||
uint16_t ColorDetection::getColorValue(color color){
|
||||
uint16_t ColorDetection::getColorValue(color color) {
|
||||
|
||||
switch(color)
|
||||
{
|
||||
switch (color) {
|
||||
case VEML_RED:
|
||||
return readDoubleRegister(REG_RED);
|
||||
break;
|
||||
@ -62,30 +64,40 @@ uint16_t ColorDetection::getColorValue(color color){
|
||||
}
|
||||
};
|
||||
|
||||
uint16_t ColorDetection::readDoubleRegister(uint8_t regAddr){
|
||||
uint16_t ColorDetection::readDoubleRegister(uint8_t regAddr) {
|
||||
uint16_t result = 0;
|
||||
Wire.beginTransmission(VEML_ADDR);
|
||||
Wire.write(regAddr);
|
||||
if(Wire.endTransmission() != 0){
|
||||
Serial.printf("Reading Register %d failed",regAddr);
|
||||
if (Wire.endTransmission() != 0) {
|
||||
Serial.printf("Reading Register %d failed", regAddr);
|
||||
}
|
||||
Wire.requestFrom(VEML_ADDR,2);
|
||||
Wire.requestFrom(VEML_ADDR, 2);
|
||||
uint8_t offset = 0;
|
||||
while(Wire.available()){
|
||||
while (Wire.available()) {
|
||||
result = result << 8;
|
||||
result = result | (Wire.read()<<offset);
|
||||
result = result | (Wire.read() << offset);
|
||||
offset = offset + 8;
|
||||
}
|
||||
return result;
|
||||
};
|
||||
|
||||
void ColorDetection::writeDoubleRegister(uint8_t regAddr, uint16_t data){
|
||||
//erst low dann high
|
||||
void ColorDetection::writeDoubleRegister(uint8_t regAddr, uint16_t data) {
|
||||
// erst low dann high
|
||||
Wire.beginTransmission(VEML_ADDR);
|
||||
Wire.write(regAddr);
|
||||
Wire.write((uint8_t)(data&0x00FF));
|
||||
Wire.write((uint8_t)((data>>8)&0x00FF));
|
||||
if(Wire.endTransmission() != 0){
|
||||
Serial.printf("Reading Register %d failed",regAddr);
|
||||
Wire.write((uint8_t)(data & 0x00FF));
|
||||
Wire.write((uint8_t)((data >> 8) & 0x00FF));
|
||||
if (Wire.endTransmission() != 0) {
|
||||
Serial.printf("Reading Register %d failed", regAddr);
|
||||
}
|
||||
};
|
||||
|
||||
|
||||
float ColorDetection::modelCurrentConsumption() {
|
||||
return PowerParameters::CurrentConsumptions::CURRENT_SENSOR_RGBW;
|
||||
};
|
||||
|
||||
float ColorDetection::modelChargeConsumption(uint16_t durationMs) {
|
||||
return PowerParameters::CurrentConsumptions::CURRENT_SENSOR_RGBW *
|
||||
durationMs * 10e6;
|
||||
}
|
@ -65,7 +65,28 @@ public:
|
||||
void begin(void);
|
||||
void configure(VEML_CONFIG config);
|
||||
uint16_t getColorValue(color color);
|
||||
protected:
|
||||
|
||||
/**
|
||||
* @brief Current consumtion of the sensor
|
||||
* @note May not be accurate, as it is not known if the consumption is
|
||||
* constant, or only if sensor is active. Could not be measured.
|
||||
*
|
||||
* @return
|
||||
*/
|
||||
float modelCurrentConsumption();
|
||||
|
||||
|
||||
/**
|
||||
* @brief Estimates charge consumption of the sensor for the given duration
|
||||
* @note May not be accurate, as it is not known if the consumption is
|
||||
* constant, or only if sensor is active. Could not be measured.
|
||||
*
|
||||
* @param durationMs
|
||||
* @return float
|
||||
*/
|
||||
float modelChargeConsumption(uint16_t durationMs);
|
||||
|
||||
protected:
|
||||
uint16_t readDoubleRegister(uint8_t regAddr);
|
||||
void writeDoubleRegister(uint8_t regAddr, uint16_t data);
|
||||
};
|
||||
|
@ -179,3 +179,11 @@ void Display::invertColor(void){
|
||||
}
|
||||
this->colorInverted = !this->colorInverted;
|
||||
};
|
||||
|
||||
float modelCurrentConsumption() {
|
||||
return PowerParameters::CurrentConsumptions::CURRENT_DISPLAY;
|
||||
};
|
||||
|
||||
float modelChargeConsumptionOn(uint16_t durationMs) {
|
||||
return PowerParameters::CurrentConsumptions::CURRENT_DISPLAY * durationMs * 10e6;
|
||||
};
|
@ -127,6 +127,19 @@ class Display{
|
||||
*
|
||||
*/
|
||||
void invertColor(void);
|
||||
|
||||
/**
|
||||
* @brief Estimate the current consumption of the display
|
||||
* @return consumed current in milliamperes
|
||||
*/
|
||||
float modelCurrentConsumption();
|
||||
|
||||
/**
|
||||
* @brief Estimate the energy consumption of the display
|
||||
* @param durationMs time the display will be on
|
||||
* @return consumed energy in coloumbs
|
||||
*/
|
||||
float modelChargeConsumptionOn(uint16_t durationMs);
|
||||
};
|
||||
|
||||
|
||||
|
@ -4,6 +4,7 @@
|
||||
#define IR_FRONT_PIN 14
|
||||
#define IR_BOTTOM_PIN 13
|
||||
#define DUTY_RESOLUTION LEDC_TIMER_10_BIT
|
||||
#define DUTY_CYCLE_FREQUENCY 512
|
||||
|
||||
InfraredLED::InfraredLED(uint8_t pin,ledc_timer_t timer, ledc_channel_t channel){
|
||||
this->ledPin = pin;
|
||||
@ -78,27 +79,53 @@ void InfraredLED::setState(bool state){
|
||||
};
|
||||
|
||||
void InfraredLED::sendFrequency(uint16_t frequency){
|
||||
constexpr uint32_t duty = 512;
|
||||
constexpr uint32_t duty = DUTY_CYCLE_FREQUENCY;
|
||||
// Float to force float division without casting
|
||||
constexpr float resolution = 1 << DUTY_RESOLUTION;
|
||||
if (this->ledPin == IR_BOTTOM_PIN) {
|
||||
float currentConsumption =
|
||||
(duty / resolution) *
|
||||
PowerParameters::CurrentConsumptions::CURRENT_LED_IR_BOTTOM;
|
||||
Power::waitForCurrentAllowance(
|
||||
PowerParameters::PowerConsumers::LED_IR_BOTTOM,
|
||||
currentConsumption,
|
||||
IR_LED_MAX_EXECUTION_DELAY_MS, NULL);
|
||||
this->modelCurrentConsumption(duty), IR_LED_MAX_EXECUTION_DELAY_MS,
|
||||
NULL);
|
||||
} else if (this->ledPin == IR_FRONT_PIN) {
|
||||
float currentConsumption =
|
||||
(duty / resolution) *
|
||||
PowerParameters::CurrentConsumptions::CURRENT_LED_IR_FRONT;
|
||||
Power::waitForCurrentAllowance(
|
||||
PowerParameters::PowerConsumers::LED_IR_FRONT,
|
||||
currentConsumption,
|
||||
IR_LED_MAX_EXECUTION_DELAY_MS, NULL);
|
||||
this->modelCurrentConsumption(duty), IR_LED_MAX_EXECUTION_DELAY_MS,
|
||||
NULL);
|
||||
}
|
||||
ledc_set_freq(pwmSpeedMode,timer,frequency);
|
||||
ledc_set_duty(pwmSpeedMode,channel,duty);
|
||||
ledc_update_duty(pwmSpeedMode,channel);
|
||||
};
|
||||
|
||||
float InfraredLED::modelCurrentConsumption(uint32_t duty){
|
||||
// Float to force float division without casting
|
||||
constexpr float max_value = 1 << DUTY_RESOLUTION;
|
||||
const float duty_factor = duty / max_value;
|
||||
if (this->ledPin == IR_BOTTOM_PIN) {
|
||||
return duty_factor * PowerParameters::CurrentConsumptions::CURRENT_LED_IR_BOTTOM;
|
||||
} else if (this->ledPin == IR_FRONT_PIN) {
|
||||
return duty_factor * PowerParameters::CurrentConsumptions::CURRENT_LED_IR_FRONT;
|
||||
}
|
||||
return NAN;
|
||||
};
|
||||
|
||||
float InfraredLED::modelChargeConsumptionOn(uint16_t durationMs) {
|
||||
// Float to force float division without casting
|
||||
constexpr float resolution = 1 << DUTY_RESOLUTION;
|
||||
if (this->ledPin == IR_BOTTOM_PIN) {
|
||||
return durationMs *
|
||||
PowerParameters::CurrentConsumptions::CURRENT_LED_IR_BOTTOM * 10e6;
|
||||
} else if (this->ledPin == IR_FRONT_PIN) {
|
||||
return durationMs *
|
||||
PowerParameters::CurrentConsumptions::CURRENT_LED_IR_FRONT * 10e6;
|
||||
}
|
||||
return NAN;
|
||||
}
|
||||
|
||||
float InfraredLED::modelChargeConsumptionSendFrequency(uint16_t durationMs) {
|
||||
// Float to force float division without casting
|
||||
|
||||
return durationMs * this->modelCurrentConsumption(DUTY_CYCLE_FREQUENCY) *
|
||||
10e6;
|
||||
}
|
||||
|
@ -48,6 +48,31 @@ class InfraredLED{
|
||||
* @param frequency
|
||||
*/
|
||||
void sendFrequency(uint16_t frequency);
|
||||
|
||||
/**
|
||||
* @brief Estimate the current consumption of setting the specified led to the
|
||||
* passed duty cycle
|
||||
* @param duty the duty cycle of the led
|
||||
* @return consumed current in milliamperes
|
||||
*/
|
||||
float modelCurrentConsumption(uint32_t duty);
|
||||
|
||||
/**
|
||||
* @brief Estimate the energy consumption of turning the infrared led on
|
||||
* @param durationMs time the led will be on
|
||||
* @return consumed energy in coloumbs
|
||||
*/
|
||||
float modelChargeConsumptionOn(uint16_t durationMs);
|
||||
|
||||
/**
|
||||
* @brief Estimate the energy consumption of sending a frequency on the
|
||||
* infrared led
|
||||
* @param durationMs time the led will be on
|
||||
* @param frequency the frequency the led will be flashing
|
||||
* @return consumed energy in coloumbs
|
||||
*/
|
||||
float modelChargeConsumptionSendFrequency(uint16_t durationMs);
|
||||
|
||||
protected:
|
||||
uint8_t ledPin;
|
||||
ledc_timer_t timer;
|
||||
|
@ -78,7 +78,23 @@ public:
|
||||
* @return the average of all taken meaurments
|
||||
*/
|
||||
static uint32_t getAverageValue(photoTransistors sensor, uint32_t measurments, uint32_t timeBetween);
|
||||
protected:
|
||||
|
||||
/**
|
||||
* @brief Get current consumption of the selected PTs
|
||||
*
|
||||
* @return float the current consumption of the PTs
|
||||
*/
|
||||
static float modelCurrentConsumption(void);
|
||||
|
||||
/**
|
||||
* @brief Estimate the energy consumption of setting the specified led to
|
||||
* the passed color
|
||||
* @param durationMs time the led will be on
|
||||
* @return consumed energy in coloumbs
|
||||
*/
|
||||
float modelChargeConsumptionOn(uint16_t durationMs);
|
||||
|
||||
protected:
|
||||
static const uint8_t IR_PT_FRONT_ADC = 3;
|
||||
static const uint8_t IR_PT_LEFT_ADC = 4;
|
||||
static const uint8_t IR_PT_RIGHT_ADC = 5;
|
||||
|
@ -56,6 +56,24 @@ class Motor{
|
||||
* @return current speedvalue of the motor
|
||||
*/
|
||||
uint16_t getSpeed(void);
|
||||
|
||||
/**
|
||||
* @brief Get the current consumption of the motor at specified speed
|
||||
*
|
||||
* @param duty the duty cyle that should be considered, can be between 0-8192
|
||||
*
|
||||
* @return current consumption in milliamperes
|
||||
*/
|
||||
float modelCurrentConsumption(uint16_t duty);
|
||||
|
||||
/**
|
||||
* @brief Estimate the energy consumption of the display
|
||||
* @param durationMs time the display will be on
|
||||
* @return consumed energy in coloumbs
|
||||
*/
|
||||
float modelChargeConsumptionOn(uint16_t duty, uint16_t durationMs);
|
||||
|
||||
|
||||
protected:
|
||||
uint8_t pin;
|
||||
ledc_timer_t timer;
|
||||
|
@ -25,9 +25,7 @@ void Motor::begin(void) {
|
||||
};
|
||||
|
||||
bool Motor::setSpeed(uint16_t duty) {
|
||||
const float dutyFactor = duty / static_cast<float>(1 << DUTY_RES);
|
||||
const float current =
|
||||
PowerParameters::CurrentConsumptions::CURRENT_MOTOR_T_ON * dutyFactor;
|
||||
const float current = this->modelCurrentConsumption(duty);
|
||||
if (this->pin == MOTOR_LEFT_PIN) {
|
||||
if (!Power::waitForCurrentAllowance(
|
||||
PowerParameters::PowerConsumers::MOTOR_LEFT, current,
|
||||
@ -69,3 +67,12 @@ bool Motor::setSpeed(uint16_t duty) {
|
||||
};
|
||||
|
||||
uint16_t Motor::getSpeed(void) { return this->duty; };
|
||||
|
||||
float modelCurrentConsumption(uint16_t duty) {
|
||||
const float dutyFactor = duty / static_cast<float>(1 << DUTY_RES);
|
||||
return PowerParameters::CurrentConsumptions::CURRENT_MOTOR_T_ON * dutyFactor;
|
||||
}
|
||||
|
||||
float modelChargeConsumptionOn(uint16_t duty, uint16_t durationMs) {
|
||||
return modelCurrentConsumption(duty) * durationMs * 10e6;
|
||||
}
|
||||
|
@ -294,3 +294,12 @@ void MotionDetection::writeRegister(uint8_t reg, uint8_t value){
|
||||
delayMicroseconds(10);
|
||||
handler->endTransaction();
|
||||
};
|
||||
|
||||
float MotionDetection::modelCurrentConsumption(){
|
||||
return PowerParameters::CurrentConsumptions::CURRENT_IMU;
|
||||
}
|
||||
|
||||
|
||||
float MotionDetection::modelChargeConsumption(uint16_t durationMs){
|
||||
return this->modelCurrentConsumption() * durationMs * 10e6;
|
||||
}
|
@ -187,5 +187,21 @@ public:
|
||||
* @return the amount of acutally fetched packages
|
||||
*/
|
||||
uint getDataFromFIFO(FIFO_Package* buffer);
|
||||
|
||||
/**
|
||||
* @brief Current consumtion of the sensor
|
||||
*
|
||||
* @return
|
||||
*/
|
||||
float modelCurrentConsumption();
|
||||
|
||||
|
||||
/**
|
||||
* @brief Estimates charge consumption of the sensor for the given duration
|
||||
*
|
||||
* @param durationMs
|
||||
* @return float
|
||||
*/
|
||||
float modelChargeConsumption(uint16_t durationMs);
|
||||
};
|
||||
#endif //MotionDetection
|
@ -1,13 +1,23 @@
|
||||
#include "MultiColorLight.h"
|
||||
|
||||
MultiColorLight::MultiColorLight():rgbLeds(ledAmount,ledPin){
|
||||
MultiColorLight::MultiColorLight()
|
||||
: rgbLeds(ledAmount, ledPin) {
|
||||
|
||||
};
|
||||
};
|
||||
|
||||
void MultiColorLight::begin(void){
|
||||
if(!Power::waitForCurrentAllowance(PowerParameters::PowerConsumers::LED_RGB_TOP_LEFT, PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_BASE, MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS, NULL) &&
|
||||
Power::waitForCurrentAllowance(PowerParameters::PowerConsumers::LED_RGB_TOP_RIGHT, PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_BASE, MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS, NULL) &&
|
||||
Power::waitForCurrentAllowance(PowerParameters::PowerConsumers::LED_RGB_BOTTOM, PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_BASE, MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS, NULL) ){
|
||||
void MultiColorLight::begin(void) {
|
||||
if (!Power::waitForCurrentAllowance(
|
||||
PowerParameters::PowerConsumers::LED_RGB_TOP_LEFT,
|
||||
PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_BASE,
|
||||
MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS, NULL) &&
|
||||
Power::waitForCurrentAllowance(
|
||||
PowerParameters::PowerConsumers::LED_RGB_TOP_RIGHT,
|
||||
PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_BASE,
|
||||
MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS, NULL) &&
|
||||
Power::waitForCurrentAllowance(
|
||||
PowerParameters::PowerConsumers::LED_RGB_BOTTOM,
|
||||
PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_BASE,
|
||||
MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS, NULL)) {
|
||||
ESP_LOGE(TAG, "Could not get power for MultiColorLight");
|
||||
Serial.println("Could not get power for MultiColorLight");
|
||||
}
|
||||
@ -15,35 +25,43 @@ void MultiColorLight::begin(void){
|
||||
this->turnOffLed();
|
||||
};
|
||||
|
||||
|
||||
void MultiColorLight::setLed(uint8_t index , uint32_t color){
|
||||
if (index > ledAmount-1){
|
||||
//TODO: logging
|
||||
void MultiColorLight::setLed(uint8_t index, uint32_t color) {
|
||||
if (index > ledAmount - 1) {
|
||||
// TODO: logging
|
||||
}
|
||||
uint32_t normalizedColor = normalizeColor(color);
|
||||
uint16_t colorComponentRed = (normalizedColor & 0x00FF0000) >> 16;
|
||||
uint16_t colorComponentGreen = (normalizedColor & 0x0000FF00) >> 8;
|
||||
uint16_t colorComponentBlue = (normalizedColor & 0x000000FF);
|
||||
float redChannelConsumption = (colorComponentRed/255.0) * PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_CHAN_T_ON;
|
||||
float greenChannelConsumption = (colorComponentGreen/255.0) * PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_CHAN_T_ON;
|
||||
float blueChannelConsumption = (colorComponentBlue/255.0) * PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_CHAN_T_ON;
|
||||
float totalConsumption = redChannelConsumption + greenChannelConsumption + blueChannelConsumption + PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_BASE;
|
||||
float totalConsumption = modelCurrentConsumption(normalizedColor);
|
||||
switch (index) {
|
||||
case 0:
|
||||
if(!Power::waitForCurrentAllowance(PowerParameters::PowerConsumers::LED_RGB_TOP_RIGHT, totalConsumption, MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS, NULL)){
|
||||
ESP_LOGW(TAG, "Power to set LED RGB TOP RIGHT to color %d not granted in time. Skipping.", color);
|
||||
if (!Power::waitForCurrentAllowance(
|
||||
PowerParameters::PowerConsumers::LED_RGB_TOP_RIGHT,
|
||||
totalConsumption, MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS, NULL)) {
|
||||
ESP_LOGW(TAG,
|
||||
"Power to set LED RGB TOP RIGHT to color 0x%.8X not granted in "
|
||||
"time. Skipping.",
|
||||
normalizedColor);
|
||||
return;
|
||||
}
|
||||
break;
|
||||
case 1:
|
||||
if(!Power::waitForCurrentAllowance(PowerParameters::PowerConsumers::LED_RGB_TOP_LEFT, totalConsumption, MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS, NULL)){
|
||||
ESP_LOGW(TAG, "Power to set LED RGB TOP LEFT to color %d not granted in time. Skipping.", color);
|
||||
if (!Power::waitForCurrentAllowance(
|
||||
PowerParameters::PowerConsumers::LED_RGB_TOP_LEFT, totalConsumption,
|
||||
MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS, NULL)) {
|
||||
ESP_LOGW(TAG,
|
||||
"Power to set LED RGB TOP LEFT to color 0x%.8X not granted in "
|
||||
"time. Skipping.",
|
||||
normalizedColor);
|
||||
return;
|
||||
}
|
||||
break;
|
||||
case 2:
|
||||
if(!Power::waitForCurrentAllowance(PowerParameters::PowerConsumers::LED_RGB_BOTTOM, totalConsumption, MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS, NULL)){
|
||||
ESP_LOGW(TAG, "Power to set LED RGB BOTTOM to color %d not granted in time. Skipping.", color);
|
||||
if (!Power::waitForCurrentAllowance(
|
||||
PowerParameters::PowerConsumers::LED_RGB_BOTTOM, totalConsumption,
|
||||
MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS, NULL)) {
|
||||
ESP_LOGW(TAG,
|
||||
"Power to set LED RGB BOTTOM to color 0x%.8X not granted in "
|
||||
"time. Skipping.",
|
||||
normalizedColor);
|
||||
return;
|
||||
}
|
||||
break;
|
||||
@ -52,45 +70,49 @@ void MultiColorLight::setLed(uint8_t index , uint32_t color){
|
||||
rgbLeds.show();
|
||||
};
|
||||
|
||||
|
||||
void MultiColorLight::setLed(leds leds, uint32_t color){
|
||||
switch (leds){
|
||||
void MultiColorLight::setLed(leds leds, uint32_t color) {
|
||||
switch (leds) {
|
||||
case TOP_LEFT:
|
||||
MultiColorLight::setLed(1,color);break;
|
||||
MultiColorLight::setLed(1, color);
|
||||
break;
|
||||
case TOP_RIGHT:
|
||||
MultiColorLight::setLed(0,color);break;
|
||||
MultiColorLight::setLed(0, color);
|
||||
break;
|
||||
case BOTTOM:
|
||||
MultiColorLight::setLed(2,color);break;
|
||||
MultiColorLight::setLed(2, color);
|
||||
break;
|
||||
case TOP:
|
||||
for (int index = 0; index<2; index++){
|
||||
MultiColorLight::setLed(index,color);
|
||||
}break;
|
||||
for (int index = 0; index < 2; index++) {
|
||||
MultiColorLight::setLed(index, color);
|
||||
}
|
||||
break;
|
||||
case ALL:
|
||||
for (int index = 0; index<ledAmount; index++){
|
||||
MultiColorLight::setLed(index,color);
|
||||
}break;
|
||||
for (int index = 0; index < ledAmount; index++) {
|
||||
MultiColorLight::setLed(index, color);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
//TODO logging
|
||||
// TODO logging
|
||||
break;
|
||||
}
|
||||
|
||||
};
|
||||
|
||||
void MultiColorLight::setLed(leds leds, uint8_t red, uint8_t green, uint8_t blue){
|
||||
MultiColorLight::setLed(leds, MultiColorLight::color(red,green,blue));
|
||||
void MultiColorLight::setLed(leds leds, uint8_t red, uint8_t green,
|
||||
uint8_t blue) {
|
||||
MultiColorLight::setLed(leds, MultiColorLight::color(red, green, blue));
|
||||
};
|
||||
|
||||
|
||||
void MultiColorLight::setTopLeds(uint32_t color){
|
||||
MultiColorLight::setLed(TOP,color);
|
||||
void MultiColorLight::setTopLeds(uint32_t color) {
|
||||
MultiColorLight::setLed(TOP, color);
|
||||
};
|
||||
|
||||
void MultiColorLight::setTopLeds(uint8_t red, uint8_t green, uint8_t blue){
|
||||
MultiColorLight::setTopLeds(MultiColorLight::color(red,green,blue));
|
||||
void MultiColorLight::setTopLeds(uint8_t red, uint8_t green, uint8_t blue) {
|
||||
MultiColorLight::setTopLeds(MultiColorLight::color(red, green, blue));
|
||||
};
|
||||
|
||||
void MultiColorLight::blink(uint16_t amount,uint32_t color, leds leds, uint32_t interval){
|
||||
for(uint16_t index = 0; index < amount;index++){
|
||||
void MultiColorLight::blink(uint16_t amount, uint32_t color, leds leds,
|
||||
uint32_t interval) {
|
||||
for (uint16_t index = 0; index < amount; index++) {
|
||||
MultiColorLight::setLed(leds, color);
|
||||
vTaskDelay(interval);
|
||||
MultiColorLight::turnOffLed(leds);
|
||||
@ -98,45 +120,126 @@ void MultiColorLight::blink(uint16_t amount,uint32_t color, leds leds, uint32_t
|
||||
}
|
||||
};
|
||||
|
||||
void MultiColorLight::turnOffLed(leds leds){
|
||||
switch (leds){
|
||||
void MultiColorLight::turnOffLed(leds leds) {
|
||||
switch (leds) {
|
||||
case TOP_LEFT:
|
||||
MultiColorLight::setLed(1,0);break;
|
||||
MultiColorLight::setLed(1, 0);
|
||||
break;
|
||||
case TOP_RIGHT:
|
||||
MultiColorLight::setLed(0,0);break;
|
||||
MultiColorLight::setLed(0, 0);
|
||||
break;
|
||||
case BOTTOM:
|
||||
MultiColorLight::setLed(2,0);break;
|
||||
MultiColorLight::setLed(2, 0);
|
||||
break;
|
||||
case TOP:
|
||||
for (int index = 0; index<2; index++){
|
||||
MultiColorLight::setLed(index,0);
|
||||
}break;
|
||||
for (int index = 0; index < 2; index++) {
|
||||
MultiColorLight::setLed(index, 0);
|
||||
}
|
||||
break;
|
||||
case ALL:
|
||||
for (int index = 0; index<3; index++){
|
||||
MultiColorLight::setLed(index,0);
|
||||
}break;
|
||||
for (int index = 0; index < 3; index++) {
|
||||
MultiColorLight::setLed(index, 0);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
//TODO logging
|
||||
// TODO logging
|
||||
break;
|
||||
}
|
||||
};
|
||||
|
||||
uint32_t MultiColorLight::color(uint8_t r, uint8_t g, uint8_t b){
|
||||
return rgbLeds.Color(r,g,b);
|
||||
uint32_t MultiColorLight::color(uint8_t r, uint8_t g, uint8_t b) {
|
||||
return rgbLeds.Color(r, g, b);
|
||||
};
|
||||
|
||||
//PRIVATE
|
||||
uint32_t MultiColorLight::normalizeColor(uint32_t color,uint8_t maxBrightness){
|
||||
uint8_t red = (color&0x00FF0000)>>16;
|
||||
uint8_t green = (color&0x0000FF00)>>8;
|
||||
uint8_t blue = (color&0x000000FF);
|
||||
if (red > maxBrightness){
|
||||
// PRIVATE
|
||||
uint32_t MultiColorLight::normalizeColor(uint32_t color,
|
||||
uint8_t maxBrightness) {
|
||||
uint8_t red = (color & 0x00FF0000) >> 16;
|
||||
uint8_t green = (color & 0x0000FF00) >> 8;
|
||||
uint8_t blue = (color & 0x000000FF);
|
||||
if (red > maxBrightness) {
|
||||
red = maxBrightness;
|
||||
}
|
||||
if(green > maxBrightness-70){
|
||||
green = maxBrightness-70;
|
||||
if (green > maxBrightness - 70) {
|
||||
green = maxBrightness - 70;
|
||||
}
|
||||
if(blue > maxBrightness-50){
|
||||
blue = maxBrightness-50;
|
||||
if (blue > maxBrightness - 50) {
|
||||
blue = maxBrightness - 50;
|
||||
}
|
||||
return MultiColorLight::color(red,green,blue);
|
||||
}
|
||||
return MultiColorLight::color(red, green, blue);
|
||||
};
|
||||
|
||||
float MultiColorLight::modelCurrentConsumption(uint32_t color) {
|
||||
uint32_t normalizedColor = normalizeColor(color);
|
||||
uint16_t colorComponentRed = (normalizedColor & 0x00FF0000) >> 16;
|
||||
uint16_t colorComponentGreen = (normalizedColor & 0x0000FF00) >> 8;
|
||||
uint16_t colorComponentBlue = (normalizedColor & 0x000000FF);
|
||||
float redChannelConsumption =
|
||||
(colorComponentRed / 255.0) *
|
||||
PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_CHAN_T_ON;
|
||||
float greenChannelConsumption =
|
||||
(colorComponentGreen / 255.0) *
|
||||
PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_CHAN_T_ON;
|
||||
float blueChannelConsumption =
|
||||
(colorComponentBlue / 255.0) *
|
||||
PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_CHAN_T_ON;
|
||||
return redChannelConsumption + greenChannelConsumption +
|
||||
blueChannelConsumption +
|
||||
PowerParameters::CurrentConsumptions::CURRENT_LED_RGB_BASE;
|
||||
};
|
||||
|
||||
float MultiColorLight::modelCurrentConsumption(uint8_t red, uint8_t green,
|
||||
uint8_t blue) {
|
||||
return modelCurrentConsumption(MultiColorLight::color(red, green, blue));
|
||||
};
|
||||
|
||||
float MultiColorLight::modelChargeConsumption(uint8_t index, uint32_t color,
|
||||
uint16_t durationMs) {
|
||||
if (index > ledAmount - 1) {
|
||||
// TODO: logging
|
||||
}
|
||||
uint32_t normalizedColor = normalizeColor(color);
|
||||
float ledConsumption = modelCurrentConsumption(normalizedColor);
|
||||
return ledConsumption * durationMs * 10e6;
|
||||
};
|
||||
|
||||
float MultiColorLight::modelChargeConsumption(leds leds, uint32_t color,
|
||||
uint16_t durationMs) {
|
||||
float ledsConsumption = 0;
|
||||
switch (leds) {
|
||||
case TOP_LEFT:
|
||||
ledsConsumption =
|
||||
MultiColorLight::modelChargeConsumption(1, color, durationMs);
|
||||
break;
|
||||
case TOP_RIGHT:
|
||||
ledsConsumption =
|
||||
MultiColorLight::modelChargeConsumption(0, color, durationMs);
|
||||
break;
|
||||
case BOTTOM:
|
||||
ledsConsumption =
|
||||
MultiColorLight::modelChargeConsumption(2, color, durationMs);
|
||||
break;
|
||||
case TOP:
|
||||
for (int index = 0; index < 2; index++) {
|
||||
ledsConsumption +=
|
||||
MultiColorLight::modelChargeConsumption(index, color, durationMs);
|
||||
}
|
||||
break;
|
||||
case ALL:
|
||||
for (int index = 0; index < ledAmount; index++) {
|
||||
ledsConsumption +=
|
||||
MultiColorLight::modelChargeConsumption(index, color, durationMs);
|
||||
}
|
||||
break;
|
||||
default:
|
||||
// TODO logging
|
||||
break;
|
||||
}
|
||||
};
|
||||
|
||||
float MultiColorLight::modelChargeConsumption(leds leds, uint8_t red,
|
||||
uint8_t green, uint8_t blue,
|
||||
uint16_t durationMs) {
|
||||
return MultiColorLight::modelChargeConsumption(
|
||||
leds, MultiColorLight::color(red, green, blue), durationMs);
|
||||
};
|
@ -1,7 +1,8 @@
|
||||
/**
|
||||
* @file MultiColorLight.h
|
||||
* @author Saskia Duebener, Hans Haupt
|
||||
* @brief This component controls the ability to show multicolored light, using the RGB-LEDs
|
||||
* @brief This component controls the ability to show multicolored light, using
|
||||
* the RGB-LEDs
|
||||
* @version 0.2
|
||||
* @date 2023-11-25
|
||||
*
|
||||
@ -10,36 +11,31 @@
|
||||
*/
|
||||
#ifndef MultiColorLight_h
|
||||
#define MultiColorLight_h
|
||||
#include <Adafruit_NeoPixel.h>
|
||||
#include "ColorConstants.h"
|
||||
#include "../power/Power.h"
|
||||
#include "ColorConstants.h"
|
||||
#include <Adafruit_NeoPixel.h>
|
||||
|
||||
#define MULTI_COLOR_LIGHT_MAX_EXECUTION_DELAY_MS 20
|
||||
|
||||
/**
|
||||
* @brief Describes combinations of leds on the Dezibot.
|
||||
* With the Robot in Front of you, when the robot drives away from you, the left LED is TOP_LEFT
|
||||
* With the Robot in Front of you, when the robot drives away from you, the left
|
||||
* LED is TOP_LEFT
|
||||
*
|
||||
*/
|
||||
enum leds{
|
||||
TOP_LEFT,
|
||||
TOP_RIGHT,
|
||||
BOTTOM,
|
||||
TOP,
|
||||
ALL
|
||||
};
|
||||
enum leds { TOP_LEFT, TOP_RIGHT, BOTTOM, TOP, ALL };
|
||||
|
||||
#define TAG "MultiColorLight"
|
||||
|
||||
class MultiColorLight{
|
||||
class MultiColorLight {
|
||||
protected:
|
||||
static const uint16_t ledAmount = 3;
|
||||
static const int16_t ledPin = 48;
|
||||
static const uint8_t maxBrightness = 150;
|
||||
Adafruit_NeoPixel rgbLeds;
|
||||
static constexpr int maximumExecutionDelayMs = 10;
|
||||
public:
|
||||
|
||||
public:
|
||||
MultiColorLight();
|
||||
/**
|
||||
* @brief initialize the multicolor component
|
||||
@ -52,9 +48,10 @@ public:
|
||||
* @param index ranging from 0-2, 0: Right, 1: Left, 2: Bottom
|
||||
* @param color A 32-bit unsigned integer representing the color in the format
|
||||
* 0x00RRGGBB, where RR is the red component, GG is the green
|
||||
* component, and BB is the blue component. Each color can range between 0 to 100
|
||||
* component, and BB is the blue component. Each color can range
|
||||
* between 0 to 100
|
||||
*/
|
||||
void setLed(uint8_t index , uint32_t color);
|
||||
void setLed(uint8_t index, uint32_t color);
|
||||
|
||||
/**
|
||||
* @brief Set the specified leds to the passed color value
|
||||
@ -62,7 +59,8 @@ public:
|
||||
* @param leds which leds should be updated
|
||||
* @param color A 32-bit unsigned integer representing the color in the format
|
||||
* 0x00RRGGBB, where RR is the red component, GG is the green
|
||||
* component, and BB is the blue component. Each color can range between 0 to 100
|
||||
* component, and BB is the blue component. Each color can range
|
||||
* between 0 to 100
|
||||
*/
|
||||
void setLed(leds leds, uint32_t color);
|
||||
|
||||
@ -76,12 +74,74 @@ public:
|
||||
*/
|
||||
void setLed(leds leds, uint8_t red, uint8_t green, uint8_t blue);
|
||||
|
||||
/**
|
||||
* @brief calculates the current consumption of an LED with the given color
|
||||
*
|
||||
* @param color A 32-bit unsigned integer representing the color in the
|
||||
* format 0x00RRGGBB, where RR is the red component, GG is the green
|
||||
* component, and BB is the blue component.
|
||||
* @return float the current consumption in mA
|
||||
*/
|
||||
float modelCurrentConsumption(uint32_t color);
|
||||
|
||||
/**
|
||||
* @brief calculates the current consumption of an LED with the given color
|
||||
* @note color is not normalized in this function
|
||||
*
|
||||
* @param red brightness of red
|
||||
* @param green brightness of green
|
||||
* @param blue brightness of blue
|
||||
* @return float the current consumption in mA
|
||||
*/
|
||||
float modelCurrentConsumption(uint8_t red, uint8_t green, uint8_t blue);
|
||||
|
||||
/**
|
||||
* @brief Estimate the energy consumption of setting the specified led to the
|
||||
* passed color
|
||||
* @param index ranging from 0-2, 0: Right, 1: Left, 2: Bottom
|
||||
* @param color A 32-bit unsigned integer representing the color in the
|
||||
* format 0x00RRGGBB, where RR is the red component, GG is the green
|
||||
* component, and BB is the blue component. Each color can
|
||||
* range between 0 to 100
|
||||
* @return consumed energy in coloumbs
|
||||
*/
|
||||
float modelChargeConsumption(uint8_t index, uint32_t color,
|
||||
uint16_t durationMs);
|
||||
|
||||
/**
|
||||
* @brief Estimate the energy consumption of setting the specified leds to the
|
||||
* passed color value
|
||||
*
|
||||
* @param leds which leds should be considered
|
||||
* @param color A 32-bit unsigned integer representing the color in the
|
||||
* format 0x00RRGGBB, where RR is the red component, GG is the green
|
||||
* component, and BB is the blue component. Each color can
|
||||
* range between 0 to 100
|
||||
* @return consumed energy in coloumbs
|
||||
*/
|
||||
float modelChargeConsumption(leds leds, uint32_t color,
|
||||
uint16_t durationMs);
|
||||
|
||||
/**
|
||||
* @brief Estimate the energy consumption of setting the specified leds to the
|
||||
* passed color value
|
||||
*
|
||||
* @param leds which leds should be considered
|
||||
* @param red brightness of red, is normalized in the function
|
||||
* @param green brightness of green, is normalized in the function
|
||||
* @param blue brightness of blue, is normalized in the function
|
||||
* @return consumed energy in coloumbs
|
||||
*/
|
||||
float modelChargeConsumption(leds leds, uint8_t red, uint8_t green,
|
||||
uint8_t blue, uint16_t durationMs);
|
||||
|
||||
/**
|
||||
* @brief sets the two leds on the top of the robot to the specified color
|
||||
*
|
||||
* @param color A 32-bit unsigned integer representing the color in the format
|
||||
* 0x00RRGGBB, where RR is the red component, GG is the green
|
||||
* component, and BB is the blue component. Each color can range between 0 to 100
|
||||
* component, and BB is the blue component. Each color can range
|
||||
* between 0 to 100
|
||||
*/
|
||||
void setTopLeds(uint32_t color);
|
||||
|
||||
@ -106,14 +166,15 @@ public:
|
||||
* @param leds which LEDs should blink, default is TOP
|
||||
* @param interval how many miliseconds the led is on, defaults to 1s
|
||||
*/
|
||||
void blink(uint16_t amount,uint32_t color = 0x00006400,leds leds=TOP, uint32_t interval=1000);
|
||||
void blink(uint16_t amount, uint32_t color = 0x00006400, leds leds = TOP,
|
||||
uint32_t interval = 1000);
|
||||
|
||||
/**
|
||||
* @brief turn off the given leds
|
||||
*
|
||||
* @param leds which leds should be turned off, defaults to ALL
|
||||
*/
|
||||
void turnOffLed(leds leds=ALL);
|
||||
void turnOffLed(leds leds = ALL);
|
||||
|
||||
/**
|
||||
* @brief wrapper to calulate the used colorformat from a rgb-value
|
||||
@ -134,13 +195,15 @@ private:
|
||||
* @param color A 32-bit unsigned integer representing the color in the format
|
||||
* 0x00RRGGBB, where RR is the red component, GG is the green
|
||||
* component, and BB is the blue component.
|
||||
* @param maxBrigthness maximal level of brightness that is allowed for each color
|
||||
* @return uint32_t A 32-bit unsigned integer representing the color in the format
|
||||
* 0x00RRGGBB, where RR is the red component, GG is the green
|
||||
* component, and BB is the blue component. Where each component can be
|
||||
* between 0 - maxBrightness
|
||||
* @param maxBrigthness maximal level of brightness that is allowed for each
|
||||
* color
|
||||
* @return uint32_t A 32-bit unsigned integer representing the color in the
|
||||
* format 0x00RRGGBB, where RR is the red component, GG is the green
|
||||
* component, and BB is the blue component. Where each component
|
||||
* can be between 0 - maxBrightness
|
||||
*/
|
||||
uint32_t normalizeColor(uint32_t color, uint8_t maxBrigthness=maxBrightness);
|
||||
uint32_t normalizeColor(uint32_t color,
|
||||
uint8_t maxBrigthness = maxBrightness);
|
||||
};
|
||||
|
||||
#endif //MultiColorLight_h
|
||||
#endif // MultiColorLight_h
|
Reference in New Issue
Block a user